首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Blind Hyperspectral Unmixing Using Total Variation and ℓq Sparse Regularization
【24h】

Blind Hyperspectral Unmixing Using Total Variation and ℓq Sparse Regularization

机译:使用总变异和ℓq稀疏正则化的盲高光谱分解

获取原文
获取原文并翻译 | 示例

摘要

Blind hyperspectral unmixing involves jointly estimating endmembers and fractional abundances in hyperspectral images. An endmember is the spectral signature of a specific material in an image, while an abundance map specifies the amount of a material seen in each pixel in an image. In this paper, a new cyclic descent algorithm for blind hyperspectral unmixing using total variation (TV) and ℓq sparse regularization is proposed. Abundance maps are both spatially smooth and sparse. Their sparsity derives from the fact that each material in the image is not represented in all pixels. The abundance maps are assumed to be piecewise smooth since adjacent pixels in natural images tend to be composed of similar material. The TV regularizer is used to encourage piecewise smooth images, and the ℓq regularizer promotes sparsity. The dyadic expansion decouples the problem, making a cyclic descent procedure possible, where one abundance map is estimated, followed by the estimation of one endmember. A novel debiasing technique is also employed to reduce the bias of the algorithm. The algorithm is evaluated using both simulated and real hyperspectral images.
机译:盲高光谱解混涉及共同估计高光谱图像中的端成员和分数丰度。端成员是图像中特定材料的光谱特征,而丰度图指定了图像中每个像素中可见的材料量。在本文中,提出了一种新的循环下降算法,该算法使用总变化量(TV)和ℓq稀疏正则化进行盲高光谱分解。丰度图在空间上既平滑又稀疏。它们的稀疏性源自图像中的每种材料未在所有像素中都表示的事实。由于自然图像中的相邻像素往往由相似的材料组成,因此丰度图被假定为分段平滑的。电视调节器用于鼓励分段平滑图像,而theq调节器则可提高稀疏度。二进角展开解耦了这个问题,使得循环下降过程成为可能,其中估计了一个丰度图,随后估计了一个末端成员。还采用了一种新颖的去偏置技术来减少算法的偏差。使用模拟和真实的高光谱图像对算法进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号