首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization
【24h】

Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization

机译:通过总变化正则化非负张量因子分解进行高光谱解混

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral unmixing decomposes a hyperspectral imagery (HSI) into a number of constituent materials and associated proportions. Recently, nonnegative tensor factorization (NTF)-based methods have been proposed for hyperspectral unmixing thanks to their capability in representing an HSI without any information loss. However, tensor factorization-based HSI processing approaches often suffer from low-signal-to-noise ratio condition of HSI and nonuniqueness of the solution. This problem can be effectively alleviated by introducing various spatial constraints into tensor factorization to suppress the noise and decrease the number of extreme, stationary, and saddle points. On the other hand, total variation (TV) adaptively promotes piecewise smoothness while preserving edges. In this paper, we propose a TV regularized matrix-vector NTF method. It takes advantage of tensor factorization in preserving global spectral-spatial information and the merits of TV in exploiting local spatial information, thus generating smooth abundance maps with preserved edges. Experimental results on synthetic and real-world data show that the proposed method outperforms the state-of-the-art methods.
机译:高光谱分解将高光谱图像(HSI)分解为许多组成材料和相关比例。近年来,由于基于非负张量因子分解(NTF)的方法可以表示HSI而不会丢失任何信息,因此已经提出了用于高光谱解混的方法。但是,基于张量分解的HSI处理方法通常会遭受HSI的低信噪比条件和解决方案的不唯一性。通过将各种空间约束引入张量分解以抑制噪声并减少极端点,固定点和鞍点的数量,可以有效地缓解此问题。另一方面,总变化量(TV)自适应地提高分段平滑度,同时保留边缘。在本文中,我们提出了一种电视正则化矩阵矢量NTF方法。它利用张量分解来保存全局频谱空间信息,并利用电视在利用局部空间信息中的优点,从而生成具有保留边缘的平滑丰度图。综合和真实数据的实验结果表明,该方法优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号