首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing
【24h】

Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing

机译:稀疏高光谱分解的总变化空间正则化

获取原文
获取原文并翻译 | 示例

摘要

Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures (also called endmembers) in each mixed pixel collected by a remote sensing hyperspectral imaging instrument. In recent work, the linear spectral unmixing problem has been approached in semisupervised fashion as a sparse regression one, under the assumption that the observed image signatures can be expressed as linear combinations of pure spectra, known a priori and available in a library. It happens, however, that sparse unmixing focuses on analyzing the hyperspectral data without incorporating spatial information. In this paper, we include the total variation (TV) regularization to the classical sparse regression formulation, thus exploiting the spatial-contextual information present in the hyperspectral images and developing a new algorithm called sparse unmixing via variable splitting augmented Lagrangian and TV. Our experimental results, conducted with both simulated and real hyperspectral data sets, indicate the potential of including spatial information (through the TV term) on sparse unmixing formulations for improved characterization of mixed pixels in hyperspectral imagery.
机译:光谱解混的目的在于估计由遥感高光谱成像仪器收集的每个混合像素中纯光谱特征(也称为末端成员)的分数丰度。在最近的工作中,假设观察到的图像签名可以表示为纯光谱的线性组合(先验已知且可在库中获得),则以半监督方式将其作为稀疏回归来解决线性光谱分解问题。然而,稀疏分解的重点是在不合并空间信息的情况下分析高光谱数据。在本文中,我们将总变化(TV)正则化包含在经典的稀疏回归公式中,从而利用了高光谱图像中存在的空间上下文信息,并通过可变拆分增强拉格朗日和TV开发了一种新的算法,称为稀疏分解。我们在模拟和真实的高光谱数据集上进行的实验结果表明,在稀疏解混公式中包含空间信息(通过电视术语)的潜力可改善高光谱图像中混合像素的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号