首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral and Multispectral Image Fusion Based on Local Low Rank and Coupled Spectral Unmixing
【24h】

Hyperspectral and Multispectral Image Fusion Based on Local Low Rank and Coupled Spectral Unmixing

机译:基于局部低秩和耦合光谱解混的高光谱和多光谱图像融合

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images (HSIs) usually have high spectral and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolution. The fusion of HSI and MSI aims to create spectral images with high spectral and spatial resolution. In this paper, we propose a fusion algorithm by combining linear spectral unmixing with the local low-rank property. By taking advantage of the local low-rank property, we first partition the corresponding spectral image into patches. For each patch pair, we cast the fusion problem as a coupled spectral unmixing problem that extracts the abundance and the endmembers of MSI and HSI, respectively. It then updates the abundance and the endmember through an alternating update algorithm. In fact, the convergence of the alternative update algorithm can be mathematically and empirically supported. We also propose a multiscale postprocessing procedure to combine fusion results obtained under different patch sizes. In experiments on three data sets, the proposed fusion algorithms outperformed state-of-the-art fusion algorithms in both spatial and spectral domains.
机译:高光谱图像(HSI)通常具有高光谱和低空间分辨率。相反,多光谱图像(MSI)通常具有较低的光谱和较高的空间分辨率。 HSI和MSI的融合旨在创建具有高光谱和空间分辨率的光谱图像。在本文中,我们提出了一种将线性频谱分解与局部低秩特性相结合的融合算法。通过利用本地低秩属性,我们首先将相应的光谱图像划分为小块。对于每个贴片对,我们将融合问题转换为耦合频谱解混问题,分别提取MSI和HSI的丰度和末端成员。然后,它通过交替更新算法来更新丰度和端成员。实际上,可以在数学和经验上支持替代更新算法的收敛。我们还提出了一种多尺度后处理程序,以结合在不同补丁大小下获得的融合结果。在对三个数据集的实验中,所提出的融合算法在空间和光谱域上均优于最新的融合算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号