首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Decomposition and Spectral Unmixing
【24h】

Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Decomposition and Spectral Unmixing

机译:高光谱和多光谱图像融合通过非函数低级张量分解和光谱解密

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral (HS) imaging has shown its superiority in many real applications. However, it is usually difficult to obtain high-resolution (HR) HS images through existing imaging techniques due to the hardware limitations. To improve the spatial resolution of HS images, this article proposes an effective HS-multispectral (HS-MS) image fusion method by combining the ideas of nonlocal low-rank tensor modeling and spectral unmixing. To be more precise, instead of unfolding the HS image into a matrix as done in the literature, we directly represent it as a tensor, then a designed nonlocal Tucker decomposition is used to model its underlying spatial–spectral correlation and the spatial self-similarity. The MS image serves mainly as a data constraint to maintain spatial consistency. To further reduce the spectral distortions in spatial enhancement, endmembers, and abundances from the spectral are used for spectral regularization. An efficient algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the resulting model. Extensive experiments on four HS image data sets demonstrate the superiority of the proposed method over several state-of-the-art HS-MS image fusion methods.
机译:高光谱(HS)成像在许多真实应用中显示了其优越性。然而,由于硬件限制,通常难以通过现有的成像技术获得高分辨率(HR)HS图像。为了提高HS图像的空间分辨率,本文通过组合非识别低级张量建模和光谱解混的思想来提出有效的HS-MultiSpectral(HS-MS)图像融合方法。要更精确,而不是在文献中完成的矩阵,而不是将HS图像展开,我们将其直接表示为张量,然后设计了设计的非局部Tucker分解,用于模拟其潜在的空间频谱相关性和空间自相似性。 MS图像主要作为数据约束以维持空间一致性。为了进一步降低空间增强中的光谱扭曲,终端可以与光谱的丰富和丰度用于光谱正则化。开发了一种基于乘法器(ADMM)交替方向方法的高效算法来解决所得模型。在四个HS图像数据集上进行广泛的实验,证明了在若干最先进的HS-MS图像融合方法上提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号