首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multispectral and Hyperspectral Image Fusion Based on Group Spectral Embedding and Low-Rank Factorization
【24h】

Multispectral and Hyperspectral Image Fusion Based on Group Spectral Embedding and Low-Rank Factorization

机译:基于群谱嵌入和低秩分解的多光谱和高光谱图像融合

获取原文
获取原文并翻译 | 示例

摘要

Fusing low spatial resolution hyperspectral (LRHS) images and high spatial resolution multispectral (HRMS) images to obtain high spatial resolution hyperspectral images (HRHS) has received increasing interests in recent years. In this paper, a new group spectral embedding (GSE)-based LRHS and HRMS image fusion method is proposed by exploring the multiple manifold structures of spectral bands and the low-rank structure of HRHS data. First, a low-rank factorization fusion (LRFF)-based robust recovery model is developed for HRHS images, by regarding HRMS images as the spectral degradation of HRHS images and exploring the group sparse prior of difference images. Then, an assumption that grouped spectral bands share the similar local geometry is cast on LRHS and HRHS images, to formulate a GSE regularizer in the LRFF model. Finally, an iterative optimization algorithm based on augmented Lagrangian multiplier is advanced to recover HRHS images. Experimental results on several data sets show the effectiveness of the proposed method on visual and numerical comparison.
机译:近年来,融合低空间分辨率高光谱(LRHS)图像和高空间分辨率多光谱(HRMS)图像以获得高空间分辨率高光谱图像(HRHS)受到了越来越多的关注。通过探索频谱带的多重流形结构和HRHS数据的低秩结构,提出了一种新的基于群频谱嵌入(GSE)的LRHS和HRMS图像融合方法。首先,通过将HRMS图像视为HRHS图像的光谱退化并探索差异图像之前的稀疏群体,为HRHS图像开发了基于低秩分解融合(LRFF)的鲁棒恢复模型。然后,在LRHS和HRHS图像上投射成组的光谱带共享相似的局部几何形状的假设,以在LRFF模型中制定GSE正则化器。最后,提出了一种基于增强拉格朗日乘数的迭代优化算法,以恢复HRHS图像。在多个数据集上的实验结果表明,该方法在视觉和数值比较方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号