首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Novel Bayesian Spatial–Temporal Random Field Model Applied to Cloud Detection From Remotely Sensed Imagery
【24h】

A Novel Bayesian Spatial–Temporal Random Field Model Applied to Cloud Detection From Remotely Sensed Imagery

机译:一种新颖的贝叶斯时空随机场模型在遥感影像云探测中的应用

获取原文
获取原文并翻译 | 示例

摘要

With the fast advancement of remote sensing platforms and sensors, remotely sensed imagery (RSI) is increasingly being characterized by both high spatial resolution and high temporal resolution. How to efficiently use the rich spatial and temporal information in RSI for highly accurate object detection and classification is an important research question. Nevertheless, there is still a lack of a probabilistic framework that is capable of fully accounting for the spatial-temporal information in RSI for improved applications. In this paper, we present a Bayesian spatial-temporal random field model that constitutes a complete probabilistic framework for fully explaining the spatial-temporal correlation in RSI, leading to an enhanced object detection approach that is used for cloud detection from RSI. Under the Bayesian theorem, the posterior distribution of a label field is decomposed into the label prior, the data likelihood, the temporal label likelihood, and the temporal data likelihood. To address the difficulties in modeling the complex spatial-temporal correlation effect in the temporal data likelihood, a stochastic sampling approach is presented. Based on the maximum a posteriori approach, the posterior distribution is seamlessly integrated into the graph-cut optimization framework, and, therefore, the model optimization can be efficiently solved. The proposed algorithm is tested for cloud detection on both simulated and real RSIs and the results demonstrate that the proposed algorithm can effectively exploit the spatial-temporal information for achieving higher detection accuracy.
机译:随着遥感平台和传感器的快速发展,遥感图像(RSI)越来越具有高空间分辨率和高时间分辨率的特征。如何有效利用RSI中丰富的时空信息进行高精度的目标检测和分类是一个重要的研究问题。然而,仍然缺少能够完全考虑RSI中的时空信息以改进应用程序的概率框架。在本文中,我们提出了一种贝叶斯时空随机场模型,该模型构成了一个完整的概率框架,用于全面解释RSI中的时空相关性,从而导致一种用于从RSI进行云检测的增强的对象检测方法。在贝叶斯定理下,标签字段的后验分布被分解为标签先验,数据似然,时间标签似然和时间数据似然。为了解决在时间数据似然中对复杂的时空相关效应进行建模的困难,提出了一种随机抽样方法。基于最大后验方法,后验分布被无缝集成到图割优化框架中,因此可以有效地解决模型优化问题。对所提算法进行了模拟和真实RSI云检测测试,结果表明所提算法可以有效地利用时空信息,达到更高的检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号