首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Modeling Elastic Wave Propagation Using K -Space Operator-Based Temporal High-Order Staggered-Grid Finite-Difference Method
【24h】

Modeling Elastic Wave Propagation Using K -Space Operator-Based Temporal High-Order Staggered-Grid Finite-Difference Method

机译:基于K空间算子的时间高阶交错网格有限差分法建模弹性波传播。

获取原文
获取原文并翻译 | 示例

摘要

The traditional high-order staggered-grid finite-difference (SGFD) method has high-order accuracy in space, but only the second-order accuracy in time, which makes the traditional SGFD method suffer from a large temporal dispersion error during long-distance wave propagation. This paper develops temporal fourth- and sixth-order and spatial arbitrary evenorder SGFD schemes to model isotropic elastic wave propagation. The temporal high-order SGFD schemes have smaller temporal dispersion than the traditional temporal second-order scheme, and thus allow larger time steps to attain a similar accuracy. The developed temporal high-order SGFD schemes are applied to simulate a quasi-stress-velocity wave equation (QWE) that is derived in the framework of a k -space approach. A split QWE (SQWE) is further developed, and numerical simulation of SQWE results in separated P (compressional)-wave and S (shear)-wave. Theoretical computational cost analysis verifies that the numerical simulation of QWE using the temporal fourthand sixth-order SGFD schemes is more efficient than the numerical simulation of the traditional stress-velocity wave equation using the traditional temporal second-order SGFD scheme in 2-D. In 3-D, the temporal fourth-order SGFD scheme still runs faster than the traditional temporal second-order scheme; however, the temporal sixth-order scheme is more efficient only when a longer stencil length than 12 is adopted. Numerical examples confirm the correctness of the developed elastic wave modeling schemes.
机译:传统的高阶交错网格有限差分(SGFD)方法在空间上具有高阶精度,但在时间上仅具有二阶精度,这使得传统SGFD方法在长距离传输过程中会遭受较大的时间色散误差波传播。本文开发了时间四阶和六阶以及空间任意偶数SGFD方案来模拟各向同性弹性波传播。与传统的时间二阶方案相比,时间高阶SGFD方案具有较小的时间色散,因此允许较大的时间步长以获得相似的精度。将已开发的时间高阶SGFD方案应用于模拟在k空间方法框架中导出的准应力速度波动方程(QWE)。进一步开发了分离的QWE(SQWE),SQWE的数值模拟导致分离的P(压缩)波和S(剪切)波。理论上的计算成本分析证明,使用二维四阶和六阶时间SGFD方案进行的QWE数值模拟比使用传统二维二阶SGFD方案的传统应力-速度波动方程的数值模拟更为有效。在3-D中,时间四阶SGFD方案仍然比传统的时间二阶方案运行得更快。但是,仅当采用比12长的模板长度时,时间六阶方案才更有效率。数值算例证实了所开发的弹性波建模方案的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号