首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Multiview Automatic Target Recognition for Infrared Imagery Using Collaborative Sparse Priors
【24h】

Multiview Automatic Target Recognition for Infrared Imagery Using Collaborative Sparse Priors

机译:使用协作稀疏前部的红外图像自动目标识别

获取原文
获取原文并翻译 | 示例

摘要

The low resolution of infrared (IR) images makes feature extraction for classification of a challenging work. Learning-based methods, therefore, are preferred to be used on such raw imagery. In this article, in order to avoid difficulties in feature extraction, a novel multitask extension of the widely used sparse-representation-classification (SRC) method is proposed in both single and multiview set-ups. That is, the test sample could be a single IR image or images from different views. In both single-view and multiview scenarios, we try to employ collaborative spike and slab priors. This is because the traditional sparsity-inducing measures such as the -row pseudonorm makes it hard to capture the sparse structure of the coefficient matrix when expanded in terms of a training dictionary, and the priors are proved to be able to capture fairly general sparse structures. Furthermore, a joint prior and sparse coefficient estimation method (JPCEM) is proposed for the first time in this article in order to alleviate the need to handpick prior parameters required before classification. Multiple experiments are conducted on a synthetic Comanche Forward Looking IR (FLIR) Automatic Target Recognition (ATR) database collected by Army Research Lab and a challenging mid-wave IR (MWIR) image ATR database made available by the U.S. Army Night Vision and Electronic Sensors Directorate. The final results substantiate the merits of the proposed JPCEM through comparisons with other state-of-the-art methods, including both the ones based on SRC and the ones constructed using deep learning frameworks.
机译:红外线(IR)图像的低分辨率为具有挑战性的作品进行分类进行特征提取。因此,基于学习的方法优选用于这种原始图像。在本文中,为了避免特征提取的困难,在单个和多视图设置中提出了广泛使用的稀疏表示分类(SRC)方法的新型多任务扩展。也就是说,测试样本可以是来自不同视图的单反图像或图像。在单一视图和多视图场景中,我们尝试采用协作钉和平板前沿。这是因为当在训练字典的扩展时,传统的稀疏诱导措施,例如-Row伪作曲的诸如-Row伪脉冲的措施使得在扩展时难以捕获系数矩阵的稀疏结构,并且证明了前沿能够捕获相当稀疏的结构。此外,在本文中首次提出了一种先前和稀疏系数估计方法(JPCEM),以便缓解在分类之前手中需要手中的先前参数。在陆军研究实验室收集的合成Comanche前瞻性IR(FLIR)数据库和美国陆军夜视和电子传感器提供的充满挑战的中波IR(MWIR)图像的综合性康卡基前瞻性IR(FLIR)自动目标识别(ATR)数据库进行了多个实验董事会。最终结果通过与其他最先进的方法的比较证实了所提出的JPCEM的优点,包括基于SRC和使用深层学习框架构建的那些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号