首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Volcano-Seismic Transfer Learning and Uncertainty Quantification With Bayesian Neural Networks
【24h】

Volcano-Seismic Transfer Learning and Uncertainty Quantification With Bayesian Neural Networks

机译:贝叶斯神经网络的火山地震转移学习与不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Over the past few years, deep learning (DL) has emerged as an important tool in the fields of volcano and earthquake seismology. However, these methods have been applied without performing thorough analyses of the associated uncertainties. Here, we propose a solution to enhance volcano-seismic monitoring systems, through probabilistic Bayesian DL; we implement and demonstrate a workflow for waveform classification, rapid quantification of the associated uncertainty, and link these uncertainties to changes in volcanic unrest. Specifically, we introduce Bayesian neural networks (BNNs) to perform event identification, classification, and their estimated uncertainty on data gathered at two active volcanoes, Mount St. Helens, Washington, USA, and Bezymianny, Kamchatka, Russia. We demonstrate how BNNs achieve excellent performance (92.08 & x0025;) in discriminating both the type of event and its origin when the two data sets are merged together, and no additional training information is provided. Finally, we demonstrate that the data representations learned by the BNNs are transferable across different eruptive periods. We also find that the estimated uncertainty is related to changes in the state of unrest at the volcanoes and propose that it could be used to gauge whether the learned models may be exported to other eruptive scenarios.
机译:在过去几年中,深入学习(DL)已成为火山和地震地震学领域的重要工具。但是,已经应用了这些方法而不进行彻底分析相关的不确定性。在这里,我们提出了一种解决方案,通过概率贝叶斯DL来增强火山地震监测系统;我们实施并展示了波形分类,快速量化相关不确定性的工作流程,并将这些不确定性链接到火山骚乱中的变化。具体而言,我们介绍了贝叶斯神经网络(BNN),以执行在两个活跃的火山,圣海伦,华盛顿州,美国和Bezymianny,俄罗斯堪察加,俄罗斯的数据收集的数据识别,分类和他们估计的不确定性。我们展示了BNN如何在鉴别两个数据集合在一起时辨别事件类型及其原点时如何实现优异的性能(92.08和x0025;),并且没有提供额外的培训信息。最后,我们证明了BNN学习的数据表示在不同的爆发期间可转移。我们还发现估计的不确定性与火山上骚乱状态的变化有关,并建议它可以用于衡量学习模型是否可以导出到其他爆发方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号