首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification
【24h】

Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification

机译:基于深度公制学习的特征嵌入高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

Learning from a limited number of labeled samples (pixels) remains a key challenge in the hyperspectral image (HSI) classification. To address this issue, we propose a deep metric learning-based feature embedding model, which can meet the tasks both for same- and cross-scene HSI classifications. In the first task, when only a few labeled samples are available, we employ ideas from metric learning based on deep embedding features and make a similarity learning between pairs of samples. In this case, the proposed model can learn well to compare whether two samples belong to the same class. In another task, when an HSI image (target scene) that needs to be classified is not labeled at all, the embedding model can learn from another similar HSI image (source scene) with sufficient labeled samples and then transfer to the target model by using an unsupervised domain adaptation technique, which not only employs the adversarial approach to make the embedding features from the source and target samples indistinguishable but also encourages the target scene's embeddings to form similar clusters with the source scene one. After the domain adaptation between the HSIs of the two scenes is finished, any traditional HSI classifier can be used. In a simple manner, the nearest neighbor (NN) algorithm is selected as the classifier for the classification tasks throughout this article. The experimental results from a series of popular HSIs demonstrate the advantages of the proposed model both in the same- and cross-scene classification tasks.
机译:从有限数量的标记样本(像素)学习仍然是高光谱图像(HSI)分类中的关键挑战。为解决此问题,我们提出了一个深度的基于度量学习的特征嵌入模型,可以满足相同和跨场面的HSI分类的任务。在第一项任务中,当只有少数标记的样本可用时,我们就基于深度嵌入功能的度量学习采用了想法,并在样本对之间进行了相似性学习。在这种情况下,所提出的模型可以很好地比较两个样本是否属于同一类。在另一个任务中,当根本没有标记需要分类的HSI图像(目标场景)时,嵌入模型可以从另一个类似的HSI图像(源场景),具有足够的标记样本,然后通过使用将其传送到目标模型一个无监督的域适应技术,不仅采用了对源和目标样本的嵌入功能的侵犯方法难以区分,而且还鼓励目标场景的嵌入物与源场景一个形成类似的集群。在完成两个场景的HSIS之间的域适应后,可以使用任何传统的HSI分类器。以简单的方式,选择最近的邻居(NN)算法作为本文中的分类任务的分类器。一系列流行的HSIS的实验结果证明了所提出的模型在相同和交叉场景分类任务中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号