首页> 外文OA文献 >Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification
【2h】

Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification

机译:基于字典学习的特征级域自适应用于跨场景高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter one is the source scene. We name this classification problem as cross-scene classification. The main challenge of cross-scene classification is spectral shift, i.e., even for the same class in different scenes, their spectral distributions maybe have significant deviation. As all or most training samples are drawn from the source scene, while the prediction is performed in the target scene, the difference in spectral distribution would greatly deteriorate the classification performance. To solve this problem, we propose a dictionary learning-based feature-level domain adaptation technique, which aligns the spectral distributions between source and target scenes by projecting their spectral features into a shared low-dimensional embedding space by multitask dictionary learning. The basis atoms in the learned dictionary represent the common spectral components, which span a cross-scene feature space to minimize the effect of spectral shift. After the HSIs of two scenes are transformed into the shared space, any traditional HSI classification approach can be used. In this paper, sparse logistic regression (SRL) is selected as the classifier. Especially, if there are a few labeled pixels in the target domain, multitask SRL is used to further promote the classification performance. The experimental results on synthetic and real HSIs show the advantages of the proposed method for cross-scene classification.
机译:高光谱图像(HSI)分类的一大挑战是训练分类器的标记像素尺寸小。在实际的遥感应用中,我们总是面临这样的情况:一个HSI场景根本没有被标记,或者标记像素的数量非常有限,但是在另一个具有相似土地覆盖类别的HSI场景中,我们有足够的标记像素。在本文中,我们尝试借助一个具有相对较大尺寸的标记样本的类似HSI场景,对不包​​含标记样本或仅包含几个标记样本的HSI场景进行分类。前一个场景定义为目标场景,而后一个场景定义为源场景。我们将此分类问题称为跨场景分类。跨场景分类的主要挑战是频谱偏移,即,即使对于不同场景中的同一类别,它们的频谱分布也可能存在显着偏差。由于所有或大多数训练样本都是从源场景中提取的,而在目标场景中进行预测时,频谱分布的差异将大大降低分类性能。为了解决此问题,我们提出了一种基于字典学习的特征级域自适应技术,该技术通过多任务字典学习将源和目标场景的光谱特征投影到共享的低维嵌入空间中,从而对齐源和目标场景之间的光谱分布。学到的词典中的基本原子表示常见的光谱分量,它们跨越跨场景特征空间以最小化光谱偏移的影响。将两个场景的HSI转换为共享空间后,可以使用任何传统的HSI分类方法。本文选择稀疏逻辑回归作为分类器。特别是,如果目标域中的标记像素很少,则使用多任务SRL进一步提高分类性能。在合成和真实HSI上的实验结果表明了所提出的跨场景分类方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号