机译:用于高光谱图像分类的CRF嵌入的自我监督特征
China Univ Geosci Sch Land Sci & Technol Beijing 100083 Peoples R China|Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Chinese Acad Sci Inst Remote Sensing & Digital Earth Beijing 100094 Peoples R China;
Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Beijing Normal Univ State Key Lab Remote Sensing Sci Fac Geog Sci Beijing 100875 Peoples R China;
Conditional random field (CRF); convolutional neural network (CNN); feature learning; hyperspectral image (HSI) classification; self-supervision;
机译:具有CRF嵌入的自监督特征学习用于高光谱图像分类
机译:学习稀疏CRF用于高光谱图像的特征选择和分类
机译:基于深度公制学习的特征嵌入高光谱图像分类
机译:SCRF动态学习用于高光谱图像特征选择和分类
机译:植物分类高光谱图像的特征分析
机译:学习基于残差3D-2D CNN的深层空间光谱特征进行高光谱图像分类
机译:特征选择和超光图像分类的SCRF动态学习