首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Self-Supervised Feature Learning With CRF Embedding for Hyperspectral Image Classification
【24h】

Self-Supervised Feature Learning With CRF Embedding for Hyperspectral Image Classification

机译:用于高光谱图像分类的CRF嵌入的自我监督特征

获取原文
获取原文并翻译 | 示例

摘要

The challenges in hyperspectral image (HSI) classification lie in the existence of noisy spectral information and lack of contextual information among pixels. Considering the three different levels in HSIs, i.e., subpixel, pixel, and superpixel, offer complementary information, we develop a novel HSI feature learning network (HSINet) to learn consistent features by self-supervision for HSI classification. HSINet contains a three-layer deep neural network and a multifeature convolutional neural network. It automatically extracts the features such as spatial, spectral, color, and boundary as well as context information. To boost the performance of self-supervised feature learning with the likelihood maximization, the conditional random field (CRF) framework is embedded into HSINet. The potential terms of unary, pairwise, and higher order in CRF are constructed by the corresponding subpixel, pixel, and superpixel. Furthermore, the feedback information derived from these terms are also fused into the different-level feature learning process, which makes the HSINet-CRF be a trainable end-to-end deep learning model with the back-propagation algorithm. Comprehensive evaluations are performed on three widely used HSI data sets and our method outperforms the state-of-the-art methods.
机译:高光谱图像(HSI)分类中的挑战在于存在嘈杂的光谱信息和像素之间的上下文信息。考虑到HSIS中的三个不同级别,即亚像素,像素和超级贴片,提供互补信息,我们开发一个新颖的HSI特征学习网络(HSINET),以学习通过对HSI分类的自我监督来学习一致的功能。 HSINET包含三层深神经网络和多聚焦卷积神经网络。它自动提取诸如空间,光谱,颜色和边界以及上下文信息的特征。为了提高自我监督特征学习的性能,通过似然最大化,条件随机字段(CRF)框架嵌入到HSINET中。 CRF中的一元,成对和更高阶的潜在条款由相应的子像素,像素和超像素构成。此外,从这些术语导出的反馈信息也融合到不同级别特征学习过程中,这使得HSINET-CRF具有具有背部传播算法的可培训端到端深度学习模型。在三种广泛使用的HSI数据集中执行综合评估,我们的方法优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号