首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Keypoint-Based Analysis of Sonar Images: Application to Seabed Recognition
【24h】

Keypoint-Based Analysis of Sonar Images: Application to Seabed Recognition

机译:基于关键点的声纳图像分析:海底识别的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address seabed characterization and recognition in sonar images using keypoint-based approaches. Keypoint-based texture recognition has recently emerged as a powerful framework to address invariances to contrast change and geometric distortions. We investigate here to which extent keypoint-based techniques are relevant for sonar texture analysis which also involves such invariance issues. We deal with both the characterization of the visual signatures of the keypoints and the spatial patterns they form. In this respect, spatial statistics are considered. We report a quantitative evaluation for sonar seabed texture data sets comprising six texture classes such as mud, rock, and gravely sand. We clearly demonstrate the improvement brought by keypoint-based techniques compared to classical features used for sonar texture analysis such as cooccurrence and Gabor features. In this respect, we demonstrate that the joint characterization of the visual signatures of the visual keypoints and their spatial organization reaches the best recognition performances (about 97% of correct classification w.r.t. 70% and 81% using cooccurrence and Gabor features). Furthermore, the combination of difference of Gaussian keypoints and scale-invariant feature transform descriptors is recommended as the most discriminating keypoint-based framework for the analysis of sonar seabed textures.
机译:在本文中,我们使用基于关键点的方法在声纳图像中解决了海底表征和识别。基于Keypoint的纹理识别最近被出现为一个强大的框架,以解决与对比变化和几何失真进行对比的ImRar。我们在此处调查基于关键点的技术与声纳纹理分析相关,这也涉及这种不变性问题。我们处理关键点的视觉签名的表征和它们形成的空间模式。在这方面,考虑空间统计数据。我们向声纳海底纹理数据集报告了包含六个纹理类别的定量评估,如泥浆,摇滚和严重的沙子。我们清楚地展示了基于Keypoint的技术所带来的改进与用于声纳纹理分析的经典特征,例如Cooccurrence和Gabor功能。在这方面,我们证明了视觉关键点及其空间组织的视觉签名的联合表征达到了最佳识别性能(使用Cooccurrence和Gabor特征的约97%的正确分类W.R.T.70%和81%)。此外,推荐了高斯键盘和尺度不变特征变换描述符的差异的组合作为最辨别的基于关键点的基于关键点的框架,用于分析声纳海底纹理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号