首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Multi-Level Semantic Scene Interpretation Strategy for Change Interpretation in Remote Sensing Imagery
【24h】

A Multi-Level Semantic Scene Interpretation Strategy for Change Interpretation in Remote Sensing Imagery

机译:遥感影像变化解释的多层次语义场景解释策略

获取原文
获取原文并翻译 | 示例

摘要

Remotely sensed images represent an important source of information for monitoring land changes that may occur. There is, therefore, a need to analyze and interpret such information in order to extract useful semantic change interpretations. However, extracting such semantics from satellite images is a complex task that requires prior and contextual knowledge. In this paper, we focus on the issue of semantic scene interpretation for change interpretation. Consequently, a strategy for semantic remote-sensing imagery scene interpretation is proposed. This strategy is based on a representative framework that is structured around several levels of interpretation: the pixel level, the visual primitive level, the object level, the scene level, and the change interpretation level. Each level integrates a logical mechanism to extract useful knowledge for interpretation. The proposed model has been evaluated using two Landsat scene images acquired in 2000 [Landsat Enhanced Thematic Mapper plus (ETM)] and 2017 (Landsat 8) in order to check its relevance for semantic scene and change interpretation. Precision, recall, and F-measure metrics were used in order to show the capacity of the proposed methodology for semantic classification. A visual evaluation was also performed to evaluate the performance of the presented interpretation strategy, and the query results for each level show a promising capability for semantic object classification, spatial and temporal relations extraction, and change interpretation.
机译:遥感图像代表了监测可能发生的土地变化的重要信息来源。因此,需要分析和解释这样的信息以便提取有用的语义变化解释。但是,从卫星图像中提取此类语义是一项复杂的任务,需要先验和上下文知识。在本文中,我们专注于语义场景解释问题以进行变更解释。因此,提出了一种语义遥感影像场景解释的策略。此策略基于围绕几个解释级别构建的代表性框架:像素级别,视觉原始级别,对象级别,场景级别和更改解释级别。每个级别都集成了一种逻辑机制,以提取有用的知识以供解释。为了检查该模型与语义场景和更改解释的相关性,已使用2000年[Landsat Enhanced Thematic Mapper plus(ETM)]和2017年(Landsat 8)获得的两个Landsat场景图像进行了评估。为了显示所提出的方法用于语义分类的能力,使用了精度,召回率和F量度指标。还执行了视觉评估以评估所提出的解释策略的性能,并且每个级别的查询结果都显示出有希望的语义对象分类,时空关系提取和变更解释能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号