首页> 外文学位 >Beyond the Receptive Field: An Analysis of Natural Scenes and a Geometric Interpretation of Efficient Coding Strategies by the Mammalian Visual System
【24h】

Beyond the Receptive Field: An Analysis of Natural Scenes and a Geometric Interpretation of Efficient Coding Strategies by the Mammalian Visual System

机译:超越接受领域:哺乳动物视觉系统对自然场景的分析和有效编码策略的几何解释

获取原文
获取原文并翻译 | 示例

摘要

In biological and artificial neural networks the response properties of a visual neuron are often described in terms of a two-dimensional response map called the receptive field. This receptive field is intended to capture the basic behavior of a neuron and predict how that neuron will respond to a novel stimulus. However, the receptive field provides a good description of the neuron's behavior only if the neurons in the network are linear. Neurons in an organism are in fact highly nonlinear, which means their responses are not completely described by their receptive fields. A number of studies have attempted to explain the properties of these neurons in terms of an efficient representation of natural scenes. In this thesis I will demonstrate the hidden computations and interactions a network of neurons performs which are not described by their receptive field.;In the first study (Chapter 2), I address an aspect of natural scenes that is rarely considered in discussions of efficient coding. This study explores how the structural properties of an edge relate to the cause of the edge. I will show that neurons at the earliest stages of the visual system rather than just detecting edges (as depicted by their receptive fields) could potentially use these structural properties to identify the causes of an edge.;The next three studies (Chapters 3,4, and 5), I explore the non-linear response of neurons. Most neurons in the visual pathway are nonlinear. To account for their behavior, we need an approach that goes beyond the classic receptive field. A variety of different approaches has attempted to explain this behavior. I present a geometric framework which attempts to provide a better description of the nonlinear response properties of neurons in the sparse coding network. I explore the geometric characterization of neurons in the efficient coding mechanisms like gain-control, a "fan equation" model for optimal sparsity, and a cascaded linear-nonlinear model. This geometric approach provides a deeper understanding of why sparse representations (including those of cortical visual neurons) give rise to nonlinear responses. The nonlinearities in artificial neurons are visualized and quantified in terms of the curvature of iso-response surfaces. I show that the magnitude of nonlinearities increases as the overcompleteness of the network increases, even though the linear receptive fields appears to be similar.;In the next study (Chapter 6), I explore and define two forms of selectivity based on the curvature of the iso-response surfaces. The first form is "classic selectivity", which is the stimulus that produces the optimum response from a neuron. The second form is "hyperselectivity" which is defined by the dropoff in response around the optimal stimulus due to the curvature of the isoresponse surfaces. I show that the hyperselectivity is unrelated to the classic selectivity. For example, it is possible for a neuron to be narrowly tuned (hyperselective) to a broadband stimulus. Further, I show that hyperselectivity in a neurons response profile breaks the Gabor-Heisenberg limits.;Finally (Chapter 7), I show the effect of different learning rules, enforced by various cost functions used in the sparse coding network, on the response geometry of neurons. I demonstrate how different learning rules affect the interaction between the neurons in three-dimensional networks and the implications these findings have for a better representation of natural scene data in higher dimensions of image state space.
机译:在生物和人工神经网络中,视觉神经元的响应特性通常以二维响应图(称为接受场)来描述。该接受场旨在捕获神经元的基本行为,并预测该神经元将如何响应新型刺激。但是,只有当网络中的神经元是线性的时,接受场才能很好地描述神经元的行为。实际上,生物体中的神经元是高度非线性的,这意味着它们的反应不能完全由其接受域来描述。许多研究试图根据自然场景的有效表示来解释这些神经元的特性。在这篇论文中,我将演示神经元网络执行的隐藏计算和交互作用,而这些作用和交互作用并没有通过它们的感受野来描述。编码。这项研究探讨了边缘的结构特性如何与边缘的原因相关。我将证明,视觉系统最早阶段的神经元可能不仅仅是检测边缘(如它们的感受野所描绘),还可能利用这些结构特性来识别边缘的原因。;接下来的三项研究(第3,4章)和5),我探索了神经元的非线性响应。视觉通路中的大多数神经元是非线性的。为了说明他们的行为,我们需要一种超越经典接受领域的方法。各种不同的方法试图解释这种行为。我提出了一个几何框架,试图为稀疏编码网络中神经元的非线性响应特性提供更​​好的描述。我探索了有效编码机制(如增益控制,最佳稀疏度的“扇形方程”模型和级联线性-非线性模型)中神经元的几何特征。这种几何方法使人们对稀疏表示(包括皮层视觉神经元的表示)为何引起非线性响应的原因有了更深入的了解。人工神经元中的非线性可视化并根据等响应曲面的曲率进行量化。我发现即使网络的线性接收场看起来相似,非线性的幅度也会随着网络的超完备性的增加而增加。;在下一个研究(第6章)中,我基于线性度的曲率探索并定义了两种选择性形式等响应面。第一种形式是“经典选择性”,它是产生神经元最佳反应的刺激。第二种形式是“超选择性”,其定义是由于等响应面的曲率,围绕最佳刺激的响应下降。我证明超选择性与经典选择性无关。例如,神经元可能会被窄调(超选择性)以适应宽带刺激。此外,我证明了神经元响应曲线中的超选择性打破了Gabor-Heisenberg限制。最后(第7章),我展示了由稀疏编码网络中使用的各种成本函数强制实施的不同学习规则对响应几何的影响神经元。我演示了不同的学习规则如何影响三维网络中神经元之间的相互作用,以及这些发现对于在图像状态空间的更高维度中更好地表示自然场景数据的含义。

著录项

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Psychology.;Neurosciences.;Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号