首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures
【24h】

Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures

机译:具有加权张量结构的SAR系统的高效窄带RFI缓解算法

获取原文
获取原文并翻译 | 示例

摘要

Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency as the slow time proceeds. Exploiting this special property, in this paper, we divide the received signal matrix into several small matrices, in each of which the RFI is also low rank. Without losing the connection between these small matrices, we stack them into a three-mode tensor to separate the low-rank RFI tensor and recover the informative signal tensor. Previous studies employed the nuclear norm to regularize the low-rank RFI, which is not a good choice. Hence, we propose two reweighted algorithms, the reweighted tensor nuclear norm (RTNN) and the reweighted tensor Frobenius norm (RTFN) algorithms, to approximate the rank function in a tensor and accurately extract the low-rank RFI tensor from the received signal tensor. As a result, the introduction of the tensor structure dramatically decreases the computational cost. Furthermore, the reweighted scheme helps suppressing the RFI and recovering the useful signal with excellent performance. Finally, real SAR data with measured RFI is employed to demonstrate the effectiveness of the proposed methods for RFI mitigation.
机译:诸如电视和蜂窝网络之类的射频系统会严重干扰合成孔径雷达(SAR)系统。窄带射频干扰(RFI)在接收信号矩阵中具有特殊的低秩特性,因为随着慢时间的进行,窄带射频干扰的表现类似于频率几乎不变的正弦曲线。利用这一特殊性质,在本文中,我们将接收到的信号矩阵分为几个小矩阵,每个矩阵的RFI也是低秩的。在不丢失这些小矩阵之间的连接的情况下,我们将它们堆叠到三模式张量中,以分离低阶RFI张量并恢复信息量大的张量。先前的研究采用核规范来规范低级RFI,这不是一个好的选择。因此,我们提出了两种加权算法,即加权张量核规范(RTNN)和加权张量Frobenius范数(RTFN)算法,以近似张量中的秩函数并从接收到的信号张量中准确提取低秩RFI张量。结果,张量结构的引入大大降低了计算成本。此外,重新加权方案有助于抑制RFI并以出色的性能恢复有用信号。最后,使用具有测量RFI的实际SAR数据来证明所提出的缓解RFI方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号