首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Half a Percent of Labels is Enough: Efficient Animal Detection in UAV Imagery Using Deep CNNs and Active Learning
【24h】

Half a Percent of Labels is Enough: Efficient Animal Detection in UAV Imagery Using Deep CNNs and Active Learning

机译:一半的标签就足够了:使用深度CNN和主动学习功能,可以在无人机图像中进行有效的动物检测

获取原文
获取原文并翻译 | 示例

摘要

We present an Active Learning (AL) strategy for reusing a deep Convolutional Neural Network (CNN)-based object detector on a new data set. This is of particular interest for wildlife conservation: given a set of images acquired with an Unmanned Aerial Vehicle (UAV) and manually labeled ground truth, our goal is to train an animal detector that can be reused for repeated acquisitions, e.g., in follow-up years. Domain shifts between data sets typically prevent such a direct model application. We thus propose to bridge this gap using AL and introduce a new criterion called Transfer Sampling (TS). TS uses Optimal Transport (OT) to find corresponding regions between the source and the target data sets in the space of CNN activations. The CNN scores in the source data set are used to rank the samples according to their likelihood of being animals, and this ranking is transferred to the target data set. Unlike conventional AL criteria that exploit model uncertainty, TS focuses on very confident samples, thus allowing quick retrieval of true positives in the target data set, where positives are typically extremely rare and difficult to find by visual inspection. We extend TS with a new window cropping strategy that further accelerates sample retrieval. Our experiments show that with both strategies combined, less than half a percent of oracle-provided labels are enough to find almost 80% of the animals in challenging sets of UAV images, beating all baselines by a margin.
机译:我们提出了一种主动学习(AL)策略,用于在新数据集上重用基于深度卷积神经网络(CNN)的对象检测器。对于野生动植物保护而言,这尤其令人感兴趣:给定使用无人飞行器(UAV)采集的图像集并手动标记地面实况,我们的目标是训练可重复使用的动物探测器,例如在后续行动中,多年。数据集之间的域转移通常会阻止此类直接模型应用。因此,我们建议使用AL弥合这一差距,并引入一种称为传输采样(TS)的新标准。 TS使用最佳传输(OT)在CNN激活空间中找到源数据集和目标数据集之间的对应区域。源数据集中的CNN分数用于根据样本成为动物的可能性对样本进行排名,并将此排名转移到目标数据集。与利用模型不确定性的传统AL标准不同,TS着眼于非常自信的样本,因此可以快速检索目标数据集中的真实阳性,而阳性数据通常极为罕见并且很难通过目视检查找到。我们使用新的窗口裁剪策略扩展了TS,可进一步加快样本检索速度。我们的实验表明,将这两种策略结合起来,不到oracle提供的标签的一半就足以在具有挑战性的UAV图像集中找到近80%的动物,超过了所有基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号