首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Spectral Super Resolution of Hyperspectral Images via Coupled Dictionary Learning
【24h】

Spectral Super Resolution of Hyperspectral Images via Coupled Dictionary Learning

机译:通过耦合字典学习获得高光谱图像的光谱超分辨率

获取原文
获取原文并翻译 | 示例

摘要

High-spectral resolution imaging systems play a critical role in the identification and characterization of objects in a scene of interest. Unfortunately, multiple factors impair spectral resolution, as in the case of modern snapshot spectral imagers that associate each hyperpixel with a specific spectral band. In this paper, we introduce a novel postacquisition computational technique aiming to enhance the spectral dimensionality of imaging systems by exploiting the mathematical frameworks of sparse representations and dictionary learning. We propose a coupled dictionary learning model which considers joint feature spaces, composed of low- and high-spectral resolution hypercubes, in order to achieve spectral superresolution performance. We formulate our spectral coupled dictionary learning optimization problem within the context of the alternating direction method of multipliers, and we manage to update the involved quantities via closed-form expressions. In addition, we consider a realistic spectral subsampling scenario, taking into account the spectral response functions of different satellites. Moreover, we apply our spectral superresolution algorithm on real satellite data acquired by Landsat-8 and Sentinel-2 sensors. Finally, we have investigated the problem of hyperspectral image unmixing using the recovered high-spectral resolution data cube, and we are able to demonstrate that the proposed scheme provides significant value in hyperspectral image understanding techniques. Experimental results demonstrate the ability of the proposed approach to synthesize high-spectral-resolution 3-D hypercubes, achieving better performance compared to state-of-the-art resolution enhancement methods.
机译:高光谱分辨率成像系统在感兴趣的场景中物体的识别和表征中起着至关重要的作用。不幸的是,如现代快照光谱成像仪将每个超像素与特定光谱带相关联的情况一样,多种因素会损害光谱分辨率。在本文中,我们介绍了一种新颖的采集后计算技术,旨在通过利用稀疏表示和字典学习的数学框架来增强成像系统的光谱维数。我们提出了一种耦合字典学习模型,该模型考虑了由低和高光谱分辨率超立方体组成的联合特征空间,以实现光谱超分辨率性能。我们在乘数的交替方向方法的上下文中制定了频谱耦合字典学习优化问题,并且我们设法通过闭式表达式来更新所涉及的数量。另外,考虑到不同卫星的频谱响应函数,我们考虑了现实的频谱二次采样场景。此外,我们将光谱超分辨率算法应用于Landsat-8和Sentinel-2传感器获取的真实卫星数据。最后,我们使用恢复的高光谱分辨率数据立方体研究了高光谱图像分解的问题,并且我们能够证明所提出的方案在高光谱图像理解技术中具有重要价值。实验结果证明了该方法能够合成高光谱分辨率的3D超立方体,与最新的分辨率增强方法相比,具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号