首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Heuristic constraints enforcement for training of and rule extraction from a fuzzyeural architecture. II. Implementation and application
【24h】

Heuristic constraints enforcement for training of and rule extraction from a fuzzyeural architecture. II. Implementation and application

机译:启发式约束实施,用于训练模糊/神经体系结构并从中提取规则。二。实施与应用

获取原文
获取原文并翻译 | 示例

摘要

For part I, see ibid., p.143-50. This paper is the second of two companion papers. The foundations of the proposed method of heuristic constraint enforcement on membership functions for knowledge extraction from a fuzzyeural architecture was given in Part I. Part II develops methods for forming constraint sets using the constraints and techniques for finding acceptable solutions that conform to all available a priori information Moreover, methods of integration of enforcement methods into the training of the fuzzy-neural architecture are discussed. The proposed technique is illustrated on a fuzzy-AND classification problem and a motor fault detection problem. The results indicate that heuristic constraint enforcement on membership functions leads to extraction of heuristically acceptable membership functions in the input and output spaces. Although the method is described on a specific fuzzyeural architecture, it is applicable to any realization of a fuzzy inference system, including adaptive and/or static fuzzy inference systems.
机译:对于第一部分,请参见同上,第143-50页。本文是两篇配套论文中的第二篇。在第一部分中给出了从模糊/神经体系结构中提取知识的隶属函数启发式约束实施方法的基础。第二部分使用约束和技术找到了形成符合所有可用条件的可接受解的方法,以形成约束集。先验信息此外,讨论了将执行方法集成到模糊神经体系结构训练中的方法。针对模糊与分类问题和电机故障检测问题对提出的技术进行了说明。结果表明,对隶属函数的启发式约束实施导致在输入和输出空间中启发式可接受的隶属函数的提取。尽管在特定的模糊/神经体系结构上描述了该方法,但是该方法适用于模糊推理系统的任何实现,包括自适应和/或静态模糊推理系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号