首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer for MIMO Nonlinear Systems
【24h】

Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer for MIMO Nonlinear Systems

机译:带有不确定观测器的MIMO非线性系统的鲁棒自组织神经模糊控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust self-organizing neural-fuzzy-control (RSONFC) scheme for a class of uncertain nonlinear multiple-input–multiple-output (MIMO) systems. We first develop a self-organizing neural-fuzzy network (SONFN) with concurrent structure and parameter learning. The fuzzy rules of SONFN are generated or pruned systematically. The proposed RSONFC scheme comprises an SONFN identifier, an uncertainty observer, and a supervisory controller. The SONFN identifier functions as the principal controller, and the uncertainty observer is designed to oversee uncertainties within the compound system. The supervisory controller combines sliding-mode control (SMC) and an adaptive bound-estimation scheme with various weights to achieve $H_infty$ tracking performance with a desired level of attenuation. Projection-type adaptation laws of network parameters developed using the Lyapunov''s synthesis approach guarantee the stability of the overall control system. Simulation studies on a single-link flexible-joint manipulator and a two-link robot demonstrate the effectiveness of the proposed control scheme.
机译:针对一类不确定的非线性多输入多输出(MIMO)系统,本文提出了一种鲁棒的自组织神经模糊控制(RSONFC)方案。我们首先开发具有并发结构和参数学习功能的自组织神经模糊网络(SONFN)。 SONFN的模糊规则是系统生成或修剪的。所提出的RSONFC方案包括SONFN标识符,不确定性观察者和监督控制器。 SONFN标识符用作主要控制器,不确定性观察器旨在监控复合系统中的不确定性。监督控制器将滑模控制(SMC)和具有各种权重的自适应边界估计方案结合在一起,以具有所需衰减水平的$ H_infty $跟踪性能。利用李雅普诺夫综合方法开发的网络参数的投影型自适应定律可确保整个控制系统的稳定性。对单连杆柔性关节机械手和双连杆机器人的仿真研究证明了所提出的控制方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号