首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >An Evolving Interval Type-2 Neurofuzzy Inference System and Its Metacognitive Sequential Learning Algorithm
【24h】

An Evolving Interval Type-2 Neurofuzzy Inference System and Its Metacognitive Sequential Learning Algorithm

机译:演化区间2型神经模糊推理系统及其元认知顺序学习算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an evolving interval type-2 neurofuzzy inference system (IT2FIS) and its fully sequential learning algorithm. IT2FIS employs interval type-2 fuzzy sets in the antecedent part of each rule and the consequent realizes Takagi–Sugeno–Kang fuzzy inference mechanism. In order to render the inference fast and accurate, we propose a data-driven interval-reduction approach to convert interval type-1 fuzzy set in antecedent to type-1 fuzzy number in the consequent. During learning, the sequential algorithm learns a sample one-by-one and only once. The IT2FIS structure evolves automatically and adapts its network parameters using metacognitive learning mechanism concurrently. The metacognitive learning regulates the learning process by appropriate selection of learning strategies and helps the proposed IT2FIS to approximate the input–output relationship efficiently. An evolving IT2FIS employing a metacognitive learning algorithm is referred to as McTI2FIS. Performance of metacognitive interval type-2 neurofuzzy inference system (McIT2FIS) is evaluated using a set of benchmark time-series problems and is compared with existing type-2 and type-1 fuzzy inference systems. Finally, the performance of the proposed McIT2FIS has been evaluated using a practical stock price-tracking problem. The results clearly highlight that McIT2FIS performs better than other existing results in the literature.
机译:在本文中,我们提出了一种演化区间2型神经模糊推理系统(IT2FIS)及其完全顺序学习算法。 IT2FIS在每个规则的前部分采用间隔2型模糊集,从而实现了Takagi–Sugeno–Kang模糊推理机制。为了使推理快速准确,我们提出了一种数据驱动的区间缩减方法,将先前的区间类型1模糊集转换为类型1模糊数。在学习过程中,顺序算法一次只能一次学习一个样本。 IT2FIS结构会自动演化,并同时使用元认知学习机制调整其网络参数。元认知学习通过适当选择学习策略来调节学习过程,并帮助拟议的IT2FIS有效地近似输入-输出关系。使用元认知学习算法的不断发展的IT2FIS被称为McTI2FIS。使用一组基准时间序列问题评估元认知区间2型神经模糊推理系统(McIT2FIS)的性能,并将其与现有的2型和1型模糊推理系统进行比较。最后,使用实际股价跟踪问题评估了拟议的McIT2FIS的性能。结果清楚地表明,McIT2FIS的性能优于文献中其他现有结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号