首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions
【24h】

Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions

机译:使用复杂隶属函数测量类型1和类型2模糊集之间的有向或无向距离

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs fromdata. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method of comparison and only limited research currently exists that systematically compares existing distance measures (DMs) for these FSs. It is useful to know the distance between these sets, which can tell us how much the results of a system change when the inputs differ, or the amount of disagreement between individual's perceptions or opinions on different concepts. In addition, understanding the direction of difference between such FSs further enables us to rank them, learning if one represents a higher output or higher ratings than another. This paper builds on previous functions of measuring directional distance and, for the first time, presents methods of measuring the directional distance between any type-1 and type-2 FSs with both normalon-normal and convexon-convex membership functions. In real-world applications, where data-driven, non-convex, non-normal FSs are the norm, the proposed approaches for measuring the distance enables us to systematically reason about the real-world objects captured by the FSs.
机译:模糊集(FS)可能具有复杂的,非正态的或非凸的隶属函数,这些函数例如在模糊逻辑系统的输出中或从数据自动生成FS时出现。测量此类非标准FS之间的距离可能是一个挑战,因为目前尚无明确正确的比较方法,并且目前只有有限的研究可以系统地比较这些FS的现有距离量度(DM)。了解这些集合之间的距离非常有用,它可以告诉我们,当输入不同时,系统的结果会发生多少变化,或者个人对不同概念的看法或观点之间的分歧程度。此外,了解此类FS之间差异的方向还可以使我们对它们进行排名,了解一个是比另一个更高或更高的评级。本文建立在以前的方向距离测量功能的基础上,并首次提出了测量具有法向/非法向和凸/非凸隶属函数的任何类型1和类型2 FS之间方向距离的方法。在以数据驱动,非凸,非正常FS为准则的实际应用中,所提出的测量距离的方法使我们能够系统地推理由FS捕获的真实对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号