首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Efficient Robust Fuzzy Model Predictive Control of Discrete Nonlinear Time-Delay Systems via Razumikhin Approach
【24h】

Efficient Robust Fuzzy Model Predictive Control of Discrete Nonlinear Time-Delay Systems via Razumikhin Approach

机译:离散非线性时滞系统的鲁棒有效鲁棒模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two efficient robust fuzzy model predictive control algorithms are investigated for discrete nonlinear systems with multiple time delays and bounded disturbances. The famous Takagi-Sugeno (T-S) fuzzy systems are utilized to represent nonlinear systems. Instead of the Lyapunov-Krasovskii functional, the Lyapunov-Razumikhin function is adopted to deal with time delays because it involves invariant sets in the original state space of the system. A sequence of explicit control laws corresponding to a sequence of constraint sets are computed offline so that the online computational burden associated with the classical model predictive control algorithms is significantly reduced. In particular, the set invariance theory behind the Razumikhin approach, which is more complicated than the one for nondelayed systems, is directly observed. Additionally, it is proved that all (delayed) states can enter the terminal set in finite time. Moreover, robust positive invariance and input-to-state stability for time-delay systems concerning disturbances are realized. Additionally, an online optimization algorithm is also provided based on the offline computed ellipsoidal sets. Therefore, the conservatism induced by the Razumikhin approach is relaxed, while the computational cost is not significantly increased.
机译:本文针对具有多个时滞和有界扰动的离散非线性系统,研究了两种有效的鲁棒模糊模型预测控制算法。著名的Takagi-Sugeno(T-S)模糊系统用于表示非线性系统。代替Lyapunov-Krasovskii函数,采用Lyapunov-Razumikhin函数来处理时间延迟,因为它涉及系统原始状态空间中的不变集。离线计算与约束集序列相对应的一系列显式控制律,从而大大减少了与经典模型预测控制算法相关的在线计算负担。特别是,直接观察了Razumikhin方法背后的集合不变性理论,该理论比非延迟系统的集合不变性理论更为复杂。另外,证明了所有(延迟)状态都可以在有限时间内进入终端机。此外,实现了与干扰有关的时滞系统的鲁棒正不变性和输入状态稳定性。另外,还基于离线计算的椭圆集提供了在线优化算法。因此,由Razumikhin方法引起的保守性得到了缓解,而计算成本却没有显着增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号