首页> 外文期刊>IEEE Transactions on Fuzzy Systems >iPatch: A Many-Objective Type-2 Fuzzy Logic System for Field Workforce Optimization
【24h】

iPatch: A Many-Objective Type-2 Fuzzy Logic System for Field Workforce Optimization

机译:iPatch:用于目标劳动力优化的多目标2型模糊逻辑系统

获取原文
获取原文并翻译 | 示例

摘要

Employing effective optimization strategies in organizations with large workforces can have a clear impact on costs, revenues, and customer satisfaction. This is particularly true for organizations that employ large field workforces, such as utility companies. Ensuring each member of the workforce is fully utilized is a challenging problem as there are many factors that can impact the overall performance of the organization. We have developed a system that optimizes to make sure we have the right engineers, in the right place, at the right time, with the right skills. This system is currently deployed to help solve real-world optimization problems, which means there are many objectives to consider when optimizing, and there is much uncertainty in the environment. The latest version of the system uses a multiobjective genetic algorithm as its core optimization logic, with modifications such as fuzzy dominance rules (FDRs), to help overcome the issues associated with many-objective optimization. The system also utilizes genetically optimized type-2 fuzzy logic systems to better handle the uncertainty in the data and modeling. This paper shows the genetically optimized type-2 fuzzy logic systems producing better results than the crisp value implementations in our application. We also show that we can help address the weaknesses in the standard NSGA-II dominance calculations by using FDRs. The impact of this work can be measured in a number of ways; productivity benefit of 1 pound million a year, the reduction of over 2500 t of CO2 and a possible prevention of over 100 serious injuries and fatalities on the UK's roads.
机译:在拥有大量员工的组织中采用有效的优化策略可以对成本,收入和客户满意度产生明显影响。对于雇用大量现场劳动力的组织(例如公用事业公司)尤其如此。确保劳动力的每个成员得到充分利用是一个具有挑战性的问题,因为有许多因素会影响组织的整体绩效。我们已经开发了一个优化的系统,以确保我们在合适的位置,合适的时间,以合适的技能拥有合适的工程师。当前已部署该系统来帮助解决现实世界中的优化问题,这意味着优化时有许多目标需要考虑,并且环境中存在很多不确定性。该系统的最新版本使用多目标遗传算法作为其核心优化逻辑,并进行了诸如模糊优势规则(FDR)等修改,以帮助克服与多目标优化相关的问题。该系统还利用遗传优化的2型模糊逻辑系统更好地处理数据和建模中的不确定性。本文显示了经过遗传优化的2类模糊逻辑系统,其结果要比我们应用中的明晰值实现更好。我们还表明,通过使用FDR,我们可以帮助解决标准NSGA-II优势计算中的弱点。这项工作的影响可以通过多种方式来衡量。每年可为公司带来1万亿英镑的生产力收益,减少超过2500吨的二氧化碳,并有可能预防英国道路上发生的100多例严重伤害和死亡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号