首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multisynchronization of Interconnected Memristor-Based Impulsive Neural Networks With Fuzzy Hybrid Control
【24h】

Multisynchronization of Interconnected Memristor-Based Impulsive Neural Networks With Fuzzy Hybrid Control

机译:具有模糊混合控制的基于忆阻器互连的脉冲神经网络的多同步

获取原文
获取原文并翻译 | 示例

摘要

This paper studies a class of heterogeneous delayed impulsive neural networks with memristors and their collective evolution for multisynchronization. The multisynchronization represents a diversified collective behavior that is inspired by multitasking as well as observations of heterogeneity and hybridity arising from system models. In view of memristor, the memristor-based impulsive neural network is first represented by an impulsive differential inclusion. According to the memristive and impulsive mechanism, a fuzzy logic rule is introduced, and then, a new fuzzy hybrid impulsive and switching control method is presented correspondingly. It is shown that using the proposed fuzzy hybrid control scheme, multisynchronization of interconnected memristor-based impulsive neural networks can be guaranteed with a positive exponential convergence rate. The heterogeneity and hybridity in system models, thus, can be indicated by the obtained error thresholds that contribute to the multisynchronization. Numerical examples are presented and compared to demonstrate the effectiveness of the developed theoretical results.
机译:本文研究了一类具有忆阻器的异构时滞脉冲神经网络及其用于多同步的集体演化。多同步代表了受多任务处理以及系统模型产生的异质性和混合性启发的多样化集体行为。鉴于忆阻器,基于忆阻器的脉冲神经网络首先由脉冲微分包含表示。根据忆阻和冲动机制,引入了模糊逻辑规则,并相应地提出了一种新的模糊混合冲动和切换控制方法。结果表明,使用所提出的模糊混合控制方案,可以以正指数收敛速度保证互连的基于忆阻器的脉冲神经网络的多同步。因此,系统模型中的异质性和混合性可以通过获得的有助于多同步的错误阈值来表示。数值示例被提出并进行了比较,以证明所开发的理论结果的有效性。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2018年第5期|3069-3084|共16页
  • 作者单位

    College of Automation, Huazhong University of Science and Technology, Wuhan, China;

    College of Automation, Huazhong University of Science and Technology, Wuhan, China;

    School of Engineering, RMIT University, Melbourne, VIC, Australia;

    Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biological neural networks; Memristors; Synchronization; Fuzzy logic; Switches; Neurons;

    机译:生物神经网络忆阻器同步模糊逻辑开关神经元;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号