首页> 外文期刊>IEEE transactions on evolutionary computation >A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization
【24h】

A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization

机译:基于多目标优化的约束优化进化算法

获取原文
获取原文并翻译 | 示例

摘要

A considerable number of constrained optimization evolutionary algorithms (COEAs) have been proposed due to increasing interest in solving constrained optimization problems (COPs) by evolutionary algorithms (EAs). In this paper, we first review existing COEAs. Then, a novel EA for constrained optimization is presented. In the process of population evolution, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual in the offspring population. In addition, three models of a population-based algorithm-generator and an infeasible solution archiving and replacement mechanism are introduced. Furthermore, the simplex crossover is used as a recombination operator to enrich the exploration and exploitation abilities of the approach proposed. The new approach is tested on 13 well-known benchmark functions, and the empirical evidence suggests that it is robust, efficient, and generic when handling linear/nonlinear equality/inequality constraints. Compared with some other state-of-the-art algorithms, our algorithm remarkably outperforms them in terms of the best, mean, and worst objective function values and the standard deviations. It is noteworthy that our algorithm does not require the transformation of equality constraints into inequality constraints
机译:由于人们越来越关注通过进化算法(EA)解决约束优化问题(COP)的兴趣,因此提出了许多约束优化进化算法(COEA)。在本文中,我们首先回顾现有的COEA。然后,提出了一种用于约束优化的新型EA。在种群演化过程中,我们的算法基于多目标优化技术,即,如果父代种群中的某个个体被后代种群中的一个非优势个体所取代,则该个体可以被替换。此外,介绍了基于种群的算法生成器的三种模型以及不可行的解决方案存档和替换机制。此外,单纯形交叉被用作重组算子,以丰富所提出方法的探索和开发能力。该新方法在13个著名的基准函数上进行了测试,经验证据表明,该方法在处理线性/非线性等式/不等式约束时是健壮,高效且通用的。与其他一些最新算法相比,我们的算法在最佳,均值和最差目标函数值以及标准差方面均明显优于其他算法。值得注意的是,我们的算法不需要将等式约束转换为不等式约束

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号