首页> 外文期刊>IEEE transactions on evolutionary computation >Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model
【24h】

Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model

机译:动态环境的时间序列预测:DyFor遗传程序模型

获取原文
获取原文并翻译 | 示例

摘要

Several studies have applied genetic programming (GP) to the task of forecasting with favorable results. However, these studies, like those applying other techniques, have assumed a static environment, making them unsuitable for many real-world time series which are generated by varying processes. This study investigates the development of a new “dynamic” GP model that is specifically tailored for forecasting in nonstatic environments. This Dynamic Forecasting Genetic Program (DyFor GP) model incorporates features that allow it to adapt to changing environments automatically as well as retain knowledge learned from previously encountered environments. The DyFor GP model is tested for forecasting efficacy on both simulated and actual time series including the U.S. Gross Domestic Product and Consumer Price Index Inflation. Results show that the performance of the DyFor GP model improves upon that of benchmark models for all experiments. These findings highlight the DyFor GP''''s potential as an adaptive, nonlinear model for real-world forecasting applications and suggest further investigations.
机译:多项研究已将遗传编程(GP)应用于预测任务,并取得了良好的结果。但是,这些研究与应用其他技术的研究一样,都假定为静态环境,因此不适合由变化的过程生成的许多实际时间序列。本研究调查了专门为非静态环境中的预测量身定制的新“动态” GP模型的开发。这种动态预测遗传程序(DyFor GP)模型具有使其能够自动适应不断变化的环境以及保留从先前遇到的环境中学到的知识的功能。 DyFor GP模型在模拟和实际时间序列(包括美国国内生产总值和消费者价格指数通货膨胀)上均进行了预测功效的测试。结果表明,在所有实验中,DyFor GP模型的性能均优于基准模型。这些发现凸显了DyFor GP作为现实世界预测应用中的自适应非线性模型的潜力,并提出了进一步的研究建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号