首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >A New Local Search-Based Multiobjective Optimization Algorithm
【24h】

A New Local Search-Based Multiobjective Optimization Algorithm

机译:一种新的基于局部搜索的多目标优化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new multiobjective optimization framework based on nondominated sorting and local search (NSLS) is introduced. The NSLS is based on iterations. At each iteration, given a population , a simple local search method is used to get a better population , and then the nondominated sorting is adopted on to obtain a new population for the next iteration. Furthermore, the farthest-candidate approach is combined with the nondominated sorting to choose the new population for improving the diversity. Additionally, another version of NSLS (NSLS-C) is used for comparison, which replaces the farthest-candidate method with the crowded comparison mechanism presented in the nondominated sorting genetic algorithm II (NSGA-II). The proposed method (NSLS) is compared with NSLS-C and the other three classic algorithms: NSGA-II, MOEA/D-DE, and MODEA on a set of seventeen bi-objective and three tri-objective test problems. The experimental results indicate that the proposed NSLS is able to find a better spread of solutions and a better convergence to the true Pareto-optimal front compared to the other four algorithms. Furthermore, the sensitivity of NSLS is also experimentally investigated in this paper.
机译:本文提出了一种基于非支配排序和局部搜索(NSLS)的多目标优化框架。 NSLS基于迭代。在每次迭代中,给定总体,使用简单的局部搜索方法获得更好的总体,然后采用非支配排序为下一次迭代获取新的总体。此外,最远的候选方法与非主导的分类相结合,以选择新的种群以改善多样性。另外,使用另一种版本的NSLS(NSLS-C)进行比较,它用非主导排序遗传算法II(NSGA-II)中提出的拥挤比较机制代替了最远的候选方法。将所提出的方法(NSLS)与NSLS-C和其他三种经典算法(NSGA-II,MOEA / D-DE和MODEA)进行比较,以解决一组17个双目标和三个三目标测试问题。实验结果表明,与其他四种算法相比,所提出的NSLS能够找到更好的解分布,并且能够更好地收敛到真正的帕累托最优前沿。此外,本文还通过实验研究了NSLS的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号