首页> 外文期刊>IEEE transactions on evolutionary computation >Multimodal Multiobjective Evolutionary Optimization With Dual Clustering in Decision and Objective Spaces
【24h】

Multimodal Multiobjective Evolutionary Optimization With Dual Clustering in Decision and Objective Spaces

机译:多峰多目标进化优化与决策与客观空间中的双聚类

获取原文
获取原文并翻译 | 示例

摘要

This article suggests a multimodal multiobjective evolutionary algorithm with dual clustering in decision and objective spaces. One clustering is run in decision space to gather nearby solutions, which will classify solutions into multiple local clusters. Nondominated solutions within each local cluster are first selected to maintain local Pareto sets, and the remaining ones with good convergence in objective space are also selected, which will form a temporary population with more than N solutions (Nis the population size). After that, a second clustering is run in objective space for this temporary population to get N final clusters with good diversity in objective space. Finally, a pruning process is repeatedly run on the above clusters until each cluster has only one solution, which removes the most crowded solution in decision space from the most crowded cluster in objective space each time. This way, the clustering in decision space can distinguish all Pareto sets and avoid the loss of local Pareto sets, while that in objective space can maintain diversity in objective space. When solving all the benchmark problems from the competition of multimodal multiobjective optimization in the IEEE Congress on Evolutionary Computation 2019, the experiments validate our advantages to maintain diversity in both objective and decision spaces.
机译:本文介绍了一种多模式多标注型进化算法,在决策和客观空间中具有双聚类。在决策空间中运行一个群集以收集附近的解决方案,这将对解决方案分类为多个本地群集。首先选择每个本地集群内的NondoMinated解决方案以维护本地Pareto集合,并且还选择了具有良好收敛的剩余收敛,这将形成具有超过N个解决方案的临时群体(NIS人口大小)。之后,第二群集在客观空间中运行,用于这种临时人口,以获得具有良好多样性的N个最终集群。最后,在上述集群上重复运行修剪过程,直到每个群集只有一个解决方案,每次都会从客观空间中的最拥挤的群集中删除最拥挤的解决方案。这样,决策空间中的聚类可以区分所有帕累托集并避免局部帕累托集的丢失,而在客观空间中可以保持客观空间的分集。在解决2019年进化计算的IEEE国会中的多模式多目标优化竞争中的所有基准问题时,实验验证了我们在目标和决策空间中保持多样性的优势。

著录项

  • 来源
    《IEEE transactions on evolutionary computation》 |2021年第1期|130-144|共15页
  • 作者单位

    Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China|Shenzhen Pengcheng Lab Shenzhen 518055 Peoples R China|Shenzhen Univ Shenzhen Inst Artificial Intelligence & Robot Soc SZU Branch Shenzhen 518060 Peoples R China;

    Xidian Univ Int Res Ctr Intelligent Percept & Computat Minist Educ Key Lab Intelligent Percept & Image Understanding Xian 710071 Peoples R China;

    Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China;

    IPN CINVESTAV Evolutionary Computat Grp Dept Comp Sci Mexico City 07300 DF Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clustering; evolutionary algorithm; multimodal optimization; multiobjective optimization;

    机译:聚类;进化算法;多式化优化;多目标优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号