首页> 外文期刊>IEEE transactions on evolutionary computation >Handling Imbalance Between Convergence and Diversity in the Decision Space in Evolutionary Multimodal Multiobjective Optimization
【24h】

Handling Imbalance Between Convergence and Diversity in the Decision Space in Evolutionary Multimodal Multiobjective Optimization

机译:在进化多模式多目标多标注优化中决策空间的收敛与多样性之间的处理不平衡

获取原文
获取原文并翻译 | 示例

摘要

There may exist more than one Pareto optimal solution with the same objective vector to a multimodal multiobjective optimization problem (MMOP). The difficulties in finding such solutions can be different. Although a number of evolutionary multimodal multiobjective algorithms (EMMAs) have been proposed, they are unable to solve such an MMOP due to their convergence-first selection criteria. They quickly converge to the Pareto optimal solutions which are easy to find and therefore lose diversity in the decision space. That is, such an MMOP features an imbalance between achieving convergence and preserving diversity in the decision space. In this article, we first present a set of imbalanced distance minimization benchmark problems. Then we propose an evolutionary algorithm using a convergence-penalized density method (CPDEA). In CPDEA, the distances among solutions in the decision space are transformed based on their local convergence quality. Their density values are estimated based on the transformed distances and used as the selection criterion. We compare CPDEA with five state-of-the-art EMMAs on the proposed benchmarks. Our experimental results show that CPDEA is clearly superior in solving these problems.
机译:可能存在多于一个帕累托最佳解决方案,具有与多模式多目标优化问题(MMOP)相同的目标向量。寻找此类解决方案的困难可能是不同的。尽管已经提出了许多进化多模式多目标算法(EMAS),但由于它们的收敛性第一选择标准,它们无法解决这种MMOP。它们迅速收敛到帕累托最佳解决方案,易于发现,因此在决策空间中丧失多样性。也就是说,这样的MMOP具有在决策空间中实现收敛和保持分集之间的不平衡。在本文中,我们首先展示一组不平衡距离最小化基准问题。然后我们使用收敛惩罚密度方法(CPDEA)提出一种进化算法。在CPDEA中,基于其本地收敛质量转换决策空间中的解决方案之间的距离。它们的密度值基于变换的距离估计并用作选择标准。我们在拟议的基准上比较CPDEA与五个最先进的EMAMS。我们的实验结果表明,CPDEA在解决这些问题方面显然优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号