首页> 外文期刊>IEEE transactions on evolutionary computation >A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems
【24h】

A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems

机译:一种新型动态约束多目标优化问题的进化算法

获取原文
获取原文并翻译 | 示例

摘要

To promote research on dynamic constrained multiobjective optimization, we first propose a group of generic test problems with challenging characteristics, including different modes of the true Pareto front (e.g., convexity-concavity and connectedness-disconnectedness) and the changing feasible region. Subsequently, motivated by the challenges presented by dynamism and constraints, we design a dynamic constrained multiobjective optimization algorithm with a nondominated solution selection operator, a mating selection strategy, a population selection operator, a change detection method, and a change response strategy. The designed nondominated solution selection operator can obtain a nondominated population with diversity when the environment changes. The mating selection strategy and population selection operator can adaptively handle infeasible solutions. If a change is detected, the proposed change response strategy reuses some portion of the old solutions in combination with randomly generated solutions to reinitialize the population, and a steady-state update method is designed to improve the retained previous solutions. The experimental results show that the proposed test problems can be used to clearly distinguish the performance of algorithms, and that the proposed algorithm is very competitive for solving dynamic constrained multiobjective optimization problems in comparison with state-of-the-art algorithms.
机译:为了促进对动态受限的多目标优化研究,我们首先提出了一组具有具有挑战性的特征的一组通用测试问题,包括真正的帕累托前部的不同模式(例如,凸起 - 凹陷和连通断开)和变化的可行区域。随后,通过动态和约束所呈现的挑战,我们设计了一种利用NondoMinated解决方案选择运营商,交配选择策略,人口选择算子,改变检测方法和改变响应策略的动态约束多目标优化算法。设计的NondoMinated解决方案选择操作员可以在环境变化时获得具有多样性的非目标群体。交配选择策略和人口选择操作员可以自适应地处理不可行的解决方案。如果检测到更改,则建议的更改响应策略与随机生成的解决方案结合重新初始化群体的组合重用了一些旧解决方案,并且稳态更新方法旨在改善保留的先前解决方案。实验结果表明,所提出的测试问题可用于清楚地区分算法的性能,并且该算法与最先进的算法相比,求解动态约束的多目标优化问题非常有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号