首页> 外文期刊>IEEE transactions on evolutionary computation >A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization Under Linear Constraints
【24h】

A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization Under Linear Constraints

机译:线性约束下优化的协方差矩阵自适应进化策略

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the development of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving optimization problems with linear constraints. The proposed algorithm is referred to as linear constraint CMSA-ES (lcCMSA-ES). It uses a specially built mutation operator together with repair by projection to satisfy the constraints. The lcCMSA-ES evolves itself on a linear manifold defined by the constraints. The objective function is only evaluated at feasible search points (interior point method). This is a property often required in application domains, such as simulation optimization and finite element methods. The algorithm is tested on a variety of different test problems revealing considerable results.
机译:本文介绍了用于解决线性约束优化问题的协方差矩阵自适应演化策略(CMSA-ES)的开发。所提出的算法称为线性约束CMSA-ES(lcCMSA-ES)。它使用特制的变异算子以及投影修复来满足约束条件。 lcCMSA-ES在由约束定义的线性流形上自行发展。仅在可行的搜索点上评估目标函数(内部点方法)。这是应用程序领域中经常需要的属性,例如仿真优化和有限元方法。该算法在各种不同的测试问题上进行了测试,揭示了可观的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号