首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >STDP Based Unsupervised Multimodal Learning With Cross-Modal Processing in Spiking Neural Networks
【24h】

STDP Based Unsupervised Multimodal Learning With Cross-Modal Processing in Spiking Neural Networks

机译:基于STDP无监督的多媒体学习,尖型神经网络中的跨模型处理

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural networks perform reasonably well in recognition applications for single modality (e.g., images, audio, or text). In this paper, we propose a multimodal spiking neural network that combines two modalities (image and audio). The two unimodal ensembles are connected with cross-modal connections and the entire network is trained with unsupervised learning. The network receives inputs in both modalities for the same class and predicts the class label. The excitatory connections in the unimodal ensemble and the cross-modal connections are trained with power-law weight-dependent spike timing dependent plasticity learning rule. The cross-modal connections capture the correlation between neurons of different modalities. The multimodal network learns features of both modalities and improves the classification accuracy compared to unimodal topology, even when one of the modality is distorted by noise. The cross-modal connections suppress the effect of noise on classification accuracy. The well-learned cross-modal connections invoke additional spiking activity in neurons of the correct label. The cross-modal connections are only excitatory and do not inhibit the normal activity of the unimodal ensembles. We evaluated our multimodal network on images from MNIST dataset and utterances of digits from TI46 speech corpus. The multimodal network achieved a classification accuracy of 98% on the combined MNIST and TI46 dataset.
机译:尖峰神经网络在单个模态的识别应用中表现相当良好,(例如,图像,音频或文本)。在本文中,我们提出了一种多模式尖峰神经网络,其结合了两个模态(图像和音频)。两个单向的合奏与跨模型连接连接,整个网络都接受了无监督学习的培训。网络接收同一类别的两种模式中的输入,并预测类标签。单向集合中的兴奋性连接和跨模型连接训练,具有幂律依赖性峰值定时依赖性塑性学习规则。跨模型连接捕获不同方式的神经元之间的相关性。多模式网络了解两种模式的特征,并与单峰拓扑相比,即使当其中一个模态因噪声而异,也可以提高分类准确性。跨模型连接抑制了噪声对分类准确性的影响。良好学习的跨模型连接在正确标签的神经元中调用额外的尖峰活动。跨模态连接仅是兴奋性的,不抑制单峰集合的正常活动。我们在Mnist DataSet和Ti46语音语料库中的Mnist DataSet和数字的话语中评估了我们的多模态网络。多模态网络在组合MNIST和TI46数据集中实现了98%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号