首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Modeling and Forecasting Short-Term Power Load With Copula Model and Deep Belief Network
【24h】

Modeling and Forecasting Short-Term Power Load With Copula Model and Deep Belief Network

机译:用Copula模型和深度信任网络对短期电力负荷进行建模和预测

获取原文
获取原文并翻译 | 示例

摘要

Load forecasting is critical for effective scheduling and operation of power systems, which are becoming increasingly complex and uncertain, especially with the penetration of distributed power. This paper proposes a data-driven deep learning framework to forecast the short-term power load. First, the load data is processed by Box-Cox transformation. The tail-dependence of the power load on electricity price and temperature is then investigated by fitting the parametric Copula models and computing the threshold of peak load. Next, a deep belief network is built to forecast the hourly load of the power system. One-year grid load data collected from urban areas in both Texas and Arkansas, in the United States, is utilized in the case studies on short-term load forecasting (day-ahead and week-ahead) is conducted for four seasons independently. The proposed framework is compared with classical neural networks, support vector regression machine, extreme learning machine, and classical deep belief networks. The load forecasting performance is evaluated using mean absolute percentage error, root mean square error, and hit rate. The proposed framework outperforms the tested state-of-the-art algorithms, with respect to the accuracies of both day-ahead and week-ahead forecasting. Overall, the computational results confirm the effectiveness of the proposed data-driven deep learning framework.
机译:负荷预测对于电力系统的有效调度和运行至关重要,而电力系统正变得越来越复杂和不确定,尤其是随着分布式电源的普及。本文提出了一种数据驱动的深度学习框架来预测短期电力负荷。首先,通过Box-Cox转换处理负载数据。然后,通过拟合参数Copula模型并计算峰值负荷的阈值,研究电力负荷对电价和温度的尾部依赖性。接下来,建立了一个深度信任网络来预测电力系统的每小时负荷。从美国得克萨斯州和阿肯色州的城市地区收集的一年电网负荷数据用于独立进行四个季节的短期负荷预测(提前一天和提前一周)的案例研究。将该框架与经典神经网络,支持向量回归机,极限学习机和经典深度信念网络进行了比较。使用平均绝对百分比误差,均方根误差和命中率评估负载预测性能。就日前和周前预测的准确性而言,所提出的框架优于经过测试的最新算法。总体而言,计算结果证实了所提出的数据驱动型深度学习框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号