首页> 外文期刊>Neurocomputing >Empirical Mode Decomposition based Multi-objective Deep Belief Network for short-term power load forecasting
【24h】

Empirical Mode Decomposition based Multi-objective Deep Belief Network for short-term power load forecasting

机译:基于经验模式分解的多目标深度置信网络用于短期电力负荷预测

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of power grid data, the data generated by the operation of the power system is increasingly complex, and the amount of data increases exponentially. In order to fully exploit and utilize the deep relationship between data to achieve accurate prediction of power load, this paper proposes an Empirical Mode Decomposition Based Multi-objective Deep Belief Network prediction method (EMD-MODBN). In the training process of DBN, a multi-objective optimization model is constructed aiming at accuracy and diversity, and MOEA/D is used to optimize the parameters of the model to enhance the generalization ability of the prediction model. Finally, the final load forecasting results are obtained by summing up the weighted outputs of each forecasting model with ensemble learning method. The experimental results show that compared with several current better load forecasting methods, this method has obvious advantages in prediction accuracy and generalization ability. (C) 2020 Elsevier B.V. All rights reserved.
机译:随着电网数据的快速发展,电力系统运行产生的数据越来越复杂,数据量呈指数增长。为了充分利用和利用数据之间的深层关系,实现对电力负荷的准确预测,提出了一种基于经验模式分解的多目标深度信念网络预测方法(EMD-MODBN)。在DBN的训练过程中,针对精度和多样性建立了多目标优化模型,并利用MOEA / D对模型参数进行了优化,以增强预测模型的泛化能力。最后,通过集合学习法对各个预测模型的加权输出求和,得到最终的负荷预测结果。实验结果表明,与目前几种较好的负荷预测方法相比,该方法在预测精度和泛化能力方面具有明显的优势。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第may7期|110-123|共14页
  • 作者

  • 作者单位

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Hunan Peoples R China|Fujian Prov Key Lab Data Intens Comp Quanzhou 362000 Fujian Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Hunan Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Inst Cognit Control & Biophys Linguist CFL Changsha 410082 Hunan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Empirical Mode Decomposition; Multi-objective optimization algorithm; Ensemble learning; Deep belief network; Power load forecasting;

    机译:经验模式分解;多目标优化算法;综合学习;深度信任网络;电力负荷预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号