首页> 外文期刊>IEEE transactions on device and materials reliability >The Simulation of a new asymmetrical double-gate poly-Si TFT with modified channel conduction mechanism for highly reduced OFF-state leakage current
【24h】

The Simulation of a new asymmetrical double-gate poly-Si TFT with modified channel conduction mechanism for highly reduced OFF-state leakage current

机译:具有改进的沟道导通机制的新型非对称双栅多晶硅TFT的仿真,可大幅降低截止态漏电流

获取原文
获取原文并翻译 | 示例

摘要

Poly-Si thin film transistors (TFTs) exhibit large OFF-state reverse leakage currents since their channel conduction is controlled by the gate-induced grain barrier lowering (GIGBL). This also leads to the presence of the pseudosubthreshold region in the transfer characteristic. In this paper, we report a novel poly-Si multiple-gate TFT (MG-TFT), where the front gate consists of three sections with two different materials, in order to reduce the OFF-state leakage current with no significant change in the ON-state current. We demonstrate that the dominant conduction mechanism in the channel can be controlled entirely by the accumulation charge density modulation by the gate (ACMG) instead of the GIGBL, leading to a steep subthreshold slope without any pseudosubthreshold region when compared to an asymmetrical double-gate poly-Si TFT (DG-TFT), resulting in a significantly reduced OFF-state leakage current. Using two-dimensional (2-D) and two-carrier device simulation, we have analyzed the various performance and design considerations of the MG-TFT and explained the reasons for the improved performance of the MG-TFT.
机译:多晶硅薄膜晶体管(TFT)表现出大的截止状态反向漏电流,因为它们的沟道传导受栅极诱导的晶粒垒降低(GIGBL)控制。这也导致在转移特性中存在伪亚阈值区域。在本文中,我们报告了一种新颖的多晶硅多栅极TFT(MG-TFT),其中前栅极由具有两种不同材料的三个部分组成,目的是减小截止状态的漏电流,而在栅极上无明显变化。导通电流。我们证明了通道中的主导传导机制可以完全由栅极(ACMG)而不是GIGBL进行累积电荷密度调制来控制,与不对称双栅极多晶硅相比,导致陡峭的亚阈值斜率而没有任何伪亚阈值区域-Si TFT(DG-TFT),从而显着降低了截止态泄漏电流。使用二维(2-D)和双载流子器件仿真,我们分析了MG-TFT的各种性能和设计考虑因素,并解释了MG-TFT性能提高的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号