首页> 外文期刊>Device and Materials Reliability, IEEE Transactions on >Physically Based Modeling of Stress-Induced Variation in Nanoscale Transistor Performance
【24h】

Physically Based Modeling of Stress-Induced Variation in Nanoscale Transistor Performance

机译:基于应力的纳米级晶体管性能变化的物理建模

获取原文
获取原文并翻译 | 示例

摘要

Uniaxial stress is widely used in advanced CMOS technologies to boost transistor performance. Conventional compact transistor models rely on empirical fitting of the average channel stress value to predict mobility and, hence, transistor performance. This approach can lead to significant errors for deeply scaled technologies. In this paper, stress profiles are modeled in analytical form, using a physically based approach. The stress model is validated by 3-D TCAD simulations. A nanometer-scale transistor intrinsic delay formula based on injection velocity theory is then applied. The predicted variation in transistor performance compares well with the measured silicon data for a 45-nm strained CMOS technology.
机译:单轴应力被广泛用于先进的CMOS技术中,以提高晶体管的性能。传统的紧凑型晶体管模型依靠平均沟道应力值的经验拟合来预测迁移率,从而预测晶体管性能。对于深度扩展的技术,此方法可能导致重大错误。在本文中,采用基于物理的方法以分析形式对应力分布进行建模。应力模型通过3-D TCAD仿真进行了验证。然后应用了基于注入速度理论的纳米级晶体管固有延迟公式。晶体管性能的预测变化与45 nm应变CMOS技术的测得硅数据相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号