首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >A Probabilistic Discriminative Model for Android Malware Detection with Decompiled Source Code
【24h】

A Probabilistic Discriminative Model for Android Malware Detection with Decompiled Source Code

机译:具有反编译源代码的Android恶意软件检测的概率判别模型

获取原文
获取原文并翻译 | 示例

摘要

Mobile devices are an important part of our everyday lives, and the Android platform has become a market leader. In recent years a number of approaches for Android malware detection have been proposed, using permissions, source code analysis, or dynamic analysis. In this paper, we propose to use a probabilistic discriminative model based on regularized logistic regression for Android malware detection. Through extensive experimental evaluation, we demonstrate that it can generate probabilistic outputs with highly accurate classification results. In particular, we propose to use Android API calls as features extracted from decompiled source code, and analyze and explore issues in feature granularity, feature representation, feature selection, and regularization. We show that the probabilistic discriminative model also works well with permissions, and substantially outperforms the state-of-the-art methods for Android malware detection with application permissions. Furthermore, the discriminative learning model achieves the best detection results by combining both decompiled source code and application permissions. To the best of our knowledge, this is the first research that proposes probabilistic discriminative model for Android malware detection with a thorough study of desired representation of decompiled source code and is the first research work for Android malware detection task that combines both analysis of decompiled source code and application permissions.
机译:移动设备是我们日常生活的重要组成部分,而Android平台已成为市场领导者。近年来,已经提出了多种使用权限,源代码分析或动态分析的Android恶意软件检测方法。在本文中,我们建议使用基于正则逻辑回归的概率判别模型进行Android恶意软件检测。通过广泛的实验评估,我们证明了它可以产生具有高精度分类结果的概率输出。特别是,我们建议使用Android API调用作为从反编译源代码中提取的特征,并分析和探索特征粒度,特征表示,特征选择和正则化方面的问题。我们显示,概率判别模型在权限方面也能很好地起作用,并且在性能上远胜过具有应用程序权限的最新的Android恶意软件检测方法。此外,判别式学习模型通过组合反编译的源代码和应用程​​序权限来获得最佳检测结果。据我们所知,这是第一项针对Android恶意软件检测的概率判别模型,并通过对反编译源代码的期望表示的透彻研究而提出的第一项研究,并且是针对Android恶意软件检测任务的第一项研究工作,该研究结合了对反编译源的分析代码和应用程​​序权限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号