首页> 外文期刊>Microelectronics & Reliability >An Android mutation malware detection based on deep learning using visualization of importance from codes
【24h】

An Android mutation malware detection based on deep learning using visualization of importance from codes

机译:基于深度学习的Android突变恶意软件检测,使用代码重要性可视化

获取原文
获取原文并翻译 | 示例

摘要

Smartphone use, especially the Android platform, has already got 80% market shares, due to an aforementioned [where?] report, it becomes an attacker's primary objective. There is a growing number of storing private data onto smart phones and low safety defense measures, attackers can use multiple ways to launch and attack user's smartphones. (e.g. Using different coding style to confuse the malware detecting software).Existing Android malware detection methods use multiple features, like safety sensor API, system call, control flow structure and data information flow, then also machine learning to check whether its malware or not. These features provide app's unique property and limitation, that is to say, from some perspectives it might suit for some specific attack, but wouldn't suit for others. Nowadays most malware detection methods use only one of the aforementioned features, and these methods mostly analyze to detect code, but facing the malware code confusion and zero-day attacks, the aforementioned feature's extraction method may cause wrong judgement. So, it's necessary to design an effective technique analysis to prevent malware.In this paper, we use the importance of words from an apk, because of code confusion, some malware attackers only rename variables. If using general static analysis cannot judge correctly, then we use these importance values to go through our proposed method to generate an image, finally use a convolutional neural network to decide whether the apk file is malware or not.
机译:由于前面提到的[where?]报告,使用智能手机(尤其是Android平台)已获得80%的市场份额,这已成为攻击者的主要目标。越来越多的私人数据存储到智能手机上,安全防御措施也很低,攻击者可以使用多种方式来启动和攻击用户的智能手机。 (例如,使用不同的编码风格来混淆恶意软件检测软件)。现有的Android恶意软件检测方法使用多种功能,例如安全传感器API,系统调用,控制流结构和数据信息流,然后还使用机器学习来检查其恶意软件是否。这些功能提供了应用程序的独特属性和局限性,也就是说,从某些角度来看,它可能适合某些特定的攻击,但不适合其他攻击。如今,大多数恶意软件检测方法仅使用上述功能之一,并且这些方法大多会进行分析以检测代码,但是面对恶意软件代码混乱和零时差攻击,上述功能的提取方法可能会导致错误的判断。因此,有必要设计一种有效的技术分析来防止恶意软件。本文使用了apk中单词的重要性,由于代码混乱,某些恶意软件攻击者仅重命名了变量。如果使用常规静态分析不能正确判断,则可以使用这些重要性值来通过我们提出的方法来生成图像,最后使用卷积神经网络来确定apk文件是否为恶意软件。

著录项

  • 来源
    《Microelectronics & Reliability》 |2019年第2期|109-114|共6页
  • 作者

    Yen Yao-Saint; Sun Hung-Min;

  • 作者单位

    Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan;

    Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Android; Malware;

    机译:Android;恶意软体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号