首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Mechanical Stress Aware Optimization for Leakage Power Reduction
【24h】

Mechanical Stress Aware Optimization for Leakage Power Reduction

机译:机械应力感知优化以降低漏电功率

获取原文
获取原文并翻译 | 示例

摘要

Process-induced mechanical stress is used to enhance carrier transport and achieve higher drive currents in current complementary metal-oxide—semiconductor technologies. This paper explores how to fully exploit the layout dependence of stress enhancement and proposes a circuit-level, block-based, stress-enhanced optimization algorithm that uses stress-optimized layouts in conjunction with dual-$V_{rm th}$ assignment to achieve optimal power-performance tradeoffs. We begin by studying how channel stress and drive current depend on layout parameters such as active area length and contact placement, while considering all layout-dependent sources of mechanical stress in a 65 nm industrial process. We then investigate the three main layout properties that impact mechanical stress in this process and discuss how to improve stress-based performance enhancement in standard cell libraries. While varying the stress-altering layout properties of a number of standard cells in a 65 nm industrial library, we show that “dual-stress” standard cell layouts (analogous to “dual-$V_{rm th}$”) can be designed to achieve drive current differences up to ${sim}{rm 14}%$ while incurring less than half the leakage penalty of dual-$V_{rm th}$. Therefore, when the flexibility of “dual-stress” assignment is combined with dual-$V_{rm th}$ assignment (within the proposed joint optimization framework), simulation results for a set of benchmark circuits show that leakage is reduced by ${sim}{rm 24}%$ on average, for iso-delay, when compa-nred to dual-$V_{rm th}$ assignment. Since mobility enhancement does not incur the exponential leakage penalty associated with $V_{rm th}$ assignment, our optimization technique is ideal for leakage power reduction. However, our framework can also be used to achieve higher performance circuits for iso-leakage and our joint optimization framework can be used to reduce delay on average by ${sim}{rm 5}%$. In both cases, the proposed method only incurs a small area penalty $({u0003C;}{rm 0.5}%)$.
机译:在当前的互补金属氧化物半导体技术中,过程引起的机械应力用于增强载流子传输并实现更高的驱动电流。本文探讨了如何充分利用应力增强的布局依赖性,并提出了一种电路级,基于块的,应力增强的优化算法,该算法将应力优化的布局与双$ V_ {rm th} $分配结合使用以实现最佳的功率性能折衷。我们首先研究沟道应力和驱动电流如何取决于布局参数(例如有效区域长度和触点放置),同时考虑65 nm工业过程中所有依赖于布局的机械应力源。然后,我们研究了在此过程中影响机械应力的三个主要布局属性,并讨论了如何在标准单元库中改进基于应力的性能增强。在改变65 nm工业库中许多标准单元的改变应力的布局属性的同时,我们表明可以设计“双应力”标准单元布局(类似于“ dual- $ V_ {rm th} $”)达到高达$ {sim} {rm 14}%$的驱动器电流差,同时产生的漏电流损失不超过双倍$ V_ {rm th} $的一半。因此,当“双重压力”分配的灵活性与双重“ $ V_ {rm th} $”分配(在建议的联合优化框架内)结合使用时,一组基准电路的仿真结果表明,泄漏减少了$ {当与双重$ V_ {rm th} $分配比较时,平均延迟为sim} {rm 24}%$。由于迁移率增强不会引起与$ V_ {rm th} $分配相关的指数泄漏损失,因此我们的优化技术非常适合降低泄漏功率。但是,我们的框架也可以用于实现更高性能的等渗电路,而我们的联合优化框架可以用于将延迟平均降低$ {sim} {rm 5}%$。在这两种情况下,所提出的方法仅产生小面积罚款$({u0003C;} {rm 0.5}%)$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号