首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Online Algorithms for Automotive Idling Reduction With Effective Statistics
【24h】

Online Algorithms for Automotive Idling Reduction With Effective Statistics

机译:具有有效统计量的汽车空转减少在线算法

获取原文
获取原文并翻译 | 示例

摘要

Idling, or running the engine when the vehicle is not moving, accounts for 13%–23% of vehicle driving time and costs billions of gallons of fuel each year. In this paper, we consider the problem of idling reduction under the uncertainty of vehicle stop time. We abstract it as a classic ski rental problem, and propose a constrained version with two statistics and , the expected length of short stops and the probability of long stops. We develop two online algorithms, a suboptimal closed-form algorithm and an optimal numerical solution, that combine the best of the well-known deterministic and randomized schemes to minimize the worst case competitive ratio. We demonstrate the algorithms perform better than existing solutions in terms of both worst case guarantee and average case performance using simulation and real-world driving data.
机译:空转或在车辆不行驶时运行发动机,占车辆行驶时间的13%至23%,每年花费数十亿加仑的燃料。在本文中,我们考虑了在车辆停止时间不确定的情况下空转减少的问题。我们将其抽象为一个经典的滑雪租赁问题,并提出了一个受约束的版本,其中包含两个统计信息和,预期的短期停留时间长度和长期停留的概率。我们开发了两种在线算法,分别是次优闭合格式算法和最优数值解,它们结合了众所周知的确定性和随机方案中的最佳方案,以最大程度地降低了最坏情况下的竞争率。我们通过仿真和实际驾驶数据证明,在最坏情况保证和平均情况下,该算法比现有解决方案具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号