首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >SoC Speed Binning Using Machine Learning and On-Chip Slack Sensors
【24h】

SoC Speed Binning Using Machine Learning and On-Chip Slack Sensors

机译:使用机器学习和片上空闲传感器的SoC速度合并

获取原文
获取原文并翻译 | 示例

摘要

Speed binning of system-on-chips (SoCs) using conventional Fmax test requires application of complex functional test patterns. Functional workload-based speed binning techniques incur high test-cost in terms of long test-time and complexity in functional test generation, and require high-end automatic test equipment. In this paper, we propose a novel speed binning flow that uses path timing slacks, extracted with robust digital embedded sensor IPs, of selected criticalearcritical paths. We apply machine learning techniques to model a predictor considering the extracted slacks and the Fmax values from a set of randomly tested die during wafer sort. The trained predictor is used to obtain the Fmax for the remaining chips. The proposed flow has been demonstrated in an SoC benchmark circuit at 28 nm technology. For sufficient number of training samples, Fmax is correctly predicted for 99% of the prediction samples.
机译:使用常规的Fmax测试对系统级芯片(SoC)进行速度分档需要应用复杂的功能测试模式。基于功能性工作负载的速度分箱技术会因测试时间长和功能测试生成的复杂性而导致较高的测试成本,并且需要高端的自动测试设备。在本文中,我们提出了一种新颖的速度分箱流程,该流程使用路径时序松弛来提取选定的关键/近乎关键路径的鲁棒数字嵌入式传感器IP。我们应用机器学习技术对预测器进行建模,其中考虑了晶圆分类期间从一组随机测试的管芯中提取的松弛和Fmax值。经过训练的预测器用于获得剩余筹码的Fmax。建议的流程已在28 nm技术的SoC基准测试电路中得到了证明。对于足够数量的训练样本,可以正确预测99%的预测样本的Fmax。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号