首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning
【24h】

Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning

机译:通过自我监督的实例过滤和错误地图修剪启用设备上的CNN培训

获取原文
获取原文并翻译 | 示例

摘要

This work aims to enable on-device training of convolutional neural networks (CNNs) by reducing the computation cost at training time. CNN models are usually trained on high-performance computers and only the trained models are deployed to edge devices. But the statically trained model cannot adapt dynamically in a real environment and may result in low accuracy for new inputs. On-device training by learning from the real-world data after deployment can greatly improve accuracy. However, the high computation cost makes training prohibitive for resource-constrained devices. To tackle this problem, we explore the computational redundancies in training and reduce the computation cost by two complementary approaches: 1) self-supervised early instance filtering on data level and 2) error map pruning (EMP) on the algorithm level. The early instance filter selects important instances from the input stream to train the network and drops trivial ones. The EMP further prunes out insignificant computations when training with the selected instances. Extensive experiments show that the computation and energy cost is substantially reduced without any or with marginal accuracy loss. For example, when training ResNet-110 on CIFAR-10, we achieve 67.8% computation saving while preserving full accuracy and 75.1% computation saving with a marginal accuracy loss of 1.3%. When training LeNet on MNIST, we save 79% computation while boosting accuracy by 0.2%. Besides, practical energy saving is measured on edge platforms. We achieve 67.6% energy saving when training ResNet-110 on mobile GPU and 74.1% energy saving when training LeNet on MCU without any accuracy loss.
机译:这项工作旨在通过降低训练时间的计算成本来实现卷积神经网络(CNNS)的设备培训。 CNN型号通常在高性能计算机上培训,只有培训的型号部署到边缘设备。但静态训练的模型不能在真实环境中动态调整,可能导致新输入的低精度。通过在部署后从真实数据学习可以大大提高准确性,通过学习的设备培训。然而,高计算成本使训练禁止资源受限设备。为了解决这个问题,我们探讨了训练中的计算冗余,并通过两个互补方法降低计算成本:1)自我监督的早期筛选数据级别和2)在算法级别上的错误地图修剪(EMP)。早期实例过滤器从输入流中选择重要实例以培训网络并丢弃琐碎的实例。当使用所选实例培训时,EMP进一步剪切了微不足道的计算。广泛的实验表明,在没有任何或边际精度损失的情况下,计算和能量成本基本上减少。例如,当培训CiFar-10上的Reset-110时,我们达到67.8%的计算节省,同时保持完全准确性,75.1%的计算节省,边际精度损失为1.3%。在MNIST上培训LENET时,我们节省79%的计算,同时提高了0.2%的精度。此外,在边缘平台上测量了实用节能。我们在培训GPU上培训 - 110时节省67.6%的节能和74.1%的节能在MCU上培训LENET而没有任何准确性损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号