首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Test Generation for Flow-Based Microfluidic Biochips With General Architectures
【24h】

Test Generation for Flow-Based Microfluidic Biochips With General Architectures

机译:具有通用架构的流动微流体生物芯片的试验

获取原文
获取原文并翻译 | 示例

摘要

Flow-based microfluidic biochips have become a promising platform for complex biochemical assays. As the integration of such chips is increasing, a flexible general reconfigurable platform, fully programmable valve array (FPVA), has emerged. Such a 2-D array comprises regularly arranged valves using which flow-networks with different geometry, size, and connectivity can be constructed dynamically. However, the test generation for such arrays becomes challenging due to the large number of potential flow-networks and transportation paths that can be configured on-chip. In this article, we propose a strategy to generate efficient test patterns for FPVAs based on the concepts of test paths and cuts. These patterns together can cover multiple faults in both flow and control layers. We also introduce the concept of test trees and multiple cuts for a test pattern to deal with faults in FPVAs with multiple ports. Moreover, the proposed method can be applied to generate test patterns for traditional flow-based biochips with predefined architectures. The simulation results demonstrate that defects in FPVAs can be detected reliably by a limited number of test patterns generated by the proposed method. For traditional biochips with predefined architectures, these patterns also exhibit an improved test efficiency.
机译:流动型的微流体生物芯片已成为复杂生物化学测定的有希望的平台。随着这种芯片的集成增加,出现了一种灵活的一般可重新配置平台,完全可编程阀门阵列(FPVA)。这种2-D阵列包括使用具有不同几何形状,尺寸和连接的流动网络的规则布置阀可以动态地构造。然而,由于可以配置在片上的大量潜在流动网络和传送路径,这种阵列的测试生成变得具有挑战性。在本文中,我们提出了一种基于测试路径和切割的概念来为FPVA产生有效的测试模式的策略。这些模式在一起可以在流量和控制层中覆盖多个故障。我们还介绍了测试树的概念和用于测试模式的多个剪辑,以处理具有多个端口的FPVA中的故障。此外,所提出的方法可以应用于为具有预定义的架构生成用于传统基于流的生物芯片的测试模式。仿真结果表明,通过所提出的方法产生的有限数量的测试模式,可以可靠地检测FPVA中的缺陷。对于具有预定义架构的传统生物芯片,这些模式也表现出改进的测试效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号