首页> 外文OA文献 >Architectural synthesis of flow-based microfluidic large-scale integration biochips
【2h】

Architectural synthesis of flow-based microfluidic large-scale integration biochips

机译:基于流量的微流体大规模集成Biochips的建筑合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. The manufacturing technology, soft lithography, used for the flow-based biochips is advancing faster than Moore's law, resulting in increased architectural complexity. However, the designers are still using full-custom and bottom-up, manual techniques in order to design and implement these chips. As the chips become larger and the applications become more complex, the manual methodologies will not scale, becoming highly inadequate. Therefore, for the first time to our knowledge,we propose a top-down architectural synthesis methodology for the flow-based biochips. Starting from a given biochemical application and a microfluidic component library, we are interested in synthesizing a biochip architecture, i.e., performing component allocation from the library based on the biochemical application, generating the biochip schematic (netlist) and then performing physical synthesis (deciding the placement of the microfluidic components on the chip and performing routing of the microfluidic channels), such that the application completion time is minimized. We evaluate our proposed approach by synthesizing architectures for real-life applications as well as synthetic benchmarks.
机译:微流体生物芯片正在取代传统的生化分析仪,并且能够整合片上生化分析的必要功能。在本文中,我们对基于流动的生物芯片感兴趣,其中使用集成的微型阀操纵液体流动。通过组合多个微型阀,可以构建更复杂的单元,例如Micropumps,开关,混频器和多路复用器。用于基于流动的Biochips的制造技术,软光刻速度比摩尔定律更快地推进,导致建筑复杂性增加。但是,设计人员仍在使用全定制和自下而上,手动技术,以设计和实现这些芯片。随着芯片变大,应用变得更加复杂,手动方法不会扩大,变得高度不足。因此,首次涉及我们的知识,我们为基于流动的生物芯片提出了一项自上而下的架构合成方法。从给定的生物化学应用和微流体组件库开始,我们对基于生物化学应用来合成Biochip架构,即从库中执行组件分配,产生生物芯片原理图(网表),然后进行物理合成(决定将微流体组分放置在芯片上并执行微流体通道的路由,使得应用完成时间最小化。我们通过综合现实寿命应用以及合成基准来评估我们提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号