首页> 外文学位 >Use of microscale biocatalysis and development of microfluidic biochips for novel polyketide synthesis.
【24h】

Use of microscale biocatalysis and development of microfluidic biochips for novel polyketide synthesis.

机译:微型生物催化的应用和微流体生物芯片的开发,用于新型聚酮化合物的合成。

获取原文
获取原文并翻译 | 示例

摘要

The unparalleled structural and functional diversity of natural products has been possible due to the power of enzymes and multi-enzyme metabolic pathways. The fraction of this extensive biocatalytic repertoire has led to an array of natural products and natural product derivatives for use in various industries (pharmaceutical, cosmetic, agrochemicals etc.). Nevertheless, a significantly larger and more diverse universe of natural compounds and processes, as well as the enzymes and metabolic pathways that generate such molecules, remains untapped. As a result, a growing number of researchers are looking to engineer metabolic pathways to produce new compounds and novel chemistries. An in vitro strategy to manipulate these pathways offers a number of advantages and opportunities including the examination of the pathway free from cellular regulation. With the increasing availability of pure enzyme samples from genetically engineered organisms, an in vitro methodology appears to be feasible to produce novel chemistries from flexible pathways like the polyketide synthases.; The first part of this thesis research was focused on synthesizing a library of non-native polyketides taking advantage of the broad substrate specificity of a type III polyketide synthase (RppA). RppA is an iterative polyketide synthase that condenses five units of malonyl-CoA to produce an aromatic polyketide, flaviolin. Using several commercially available CoA esters, a range of 4-hydroxy-2-pyrone polyketide derivatives were synthesized. To further increase the structural diversity of polyketides, a class of broad specificity enzyme, peroxidases, was used to tailor flaviolin and other pyrones produced through RppA biocatalysis. A library of 31 novel polyketides including halogenated and coupled polyketide derivatives were synthesized. The approach developed in this study provides a new paradigm to exploit biocatalysis in the synthesis of complex natural product derivatives.; The second part of this thesis research was focused on the development of a microfluidic platform capable of performing single and multi-step enzymatic reactions to investigate in vitro tailoring of products from metabolic pathways. With the increasing popularity of microscale devices and the advantages they offer, such as improved sample handling, low reagent consumption, and ease of automation, among others, in vitro tailoring of metabolic pathways with non-pathway enzymes at the microscale offers existing opportunities. (Abstract shortened by UMI.)
机译:由于酶和多酶代谢途径的力量,天然产物无与伦比的结构和功能多样性已成为可能。这种广泛的生物催化成分的一部分导致了一系列天然产物和天然产物衍生物,可用于各种行业(制药,化妆品,农用化学品等)。然而,天然化合物和过程,以及产生此类分子的酶和代谢途径的更大,更多样化的宇宙仍未开发。结果,越来越多的研究人员正在寻求设计代谢途径以产生新化合物和新化学方法。操纵这些途径的体外策略提供了许多优点和机会,包括检查不受细胞调节的途径。随着来自基因工程生物的纯酶样品的可用性的增加,一种体外方法似乎是可行的,可以通过诸如聚酮化合物合成酶之类的灵活途径生产新的化学物质。本论文的第一部分研究重点是利用III型聚酮化合物合酶(RppA)的广泛底物特异性合成非天然聚酮化合物的文库。 RppA是一种迭代的聚酮化合物合酶,可缩合五个单元的丙二酰-CoA,生成芳香族聚酮化合物黄酮。使用几种市售的CoA酯,合成了一系列4-羟基-2-吡喃酮聚酮化合物衍生物。为了进一步增加聚酮化合物的结构多样性,使用了一类广泛特异性的酶(过氧化物酶)来修饰通过RppA生物催化产生的黄酮和其他吡喃酮。合成了包括卤代和偶联的聚酮化合物衍生物在内的31种新型聚酮化合物的文库。本研究开发的方法提供了一种在复杂的天然产物衍生物合成中利用生物催化的新范例。本文的第二部分研究集中在微流控平台的开发上,该平台能够执行单步和多步酶促反应,以研究代谢途径产物的体外定制。随着微型设备的日益普及及其提供的优势,例如改进的样品处理,较低的试剂消耗和易于自动化等,在微型设备上用非途径酶体外调节代谢途径提供了现有的机会。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号