首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Multidomain Inter/Intrachip Silicon Photonic Networks for Energy-Efficient Rack-Scale Computing Systems
【24h】

Multidomain Inter/Intrachip Silicon Photonic Networks for Energy-Efficient Rack-Scale Computing Systems

机译:多域Inter / Intachip硅光子电路用于节能机架式计算系统

获取原文
获取原文并翻译 | 示例

摘要

Rack-scale computing systems are promising to undertake the emerging large-scale applications by distributing massive tasks to processing cores. The communication and coordination efficiency of these tasks and resources directly affect the system performance and energy consumption. Silicon photonic interconnects are expected to address the communication and system power consumption challenges imposed on rack-scale systems. However, the control for optical interconnects can cause server performance degradation if not properly designed, especially for the complicated and time-consuming multidomain networks. In this paper, we study the optical interconnects for rack-scale computing systems and propose a new communication flow and control scheme for the efficient coordination of distributed resources. Particularly, we first propose a forward propagation strategy that parallels the path reservation process with the distributed tasks connection setup. Second, we develop a pre-emptive chain feedback (PCF) scheme to optimize multidomain path reservation. The PCF scheme pre-emptively allocates network resources with the help of multicell reservation window and quickly releases resources with a feedback mechanism. This solution increases the network resources utilization and task coordination efficiency while minimizing path reservation overheads. Comparing to the baseline InfiniBand network fabric and handshake scheme, PCF can improve network throughput greatly under uniform and hotspot traffic patterns. Realistic benchmark results show that the PCF scheme on average reduces 52% and 60% energy consumption per unit system performance than InfiniBand and the handshake scheme for a 256-node rack system.
机译:机架级计算系统承诺通过将大规模的任务分配到加工核心来进行新兴的大规模应用程序。这些任务和资源的通信和协调效率直接影响系统性能和能耗。预计硅光子互连将解决在机架级系统上施加的通信和系统功耗挑战。但是,如果没有正确设计,光学互连的控制可能会导致服务器性能下降,特别是对于复杂和耗时的多麦田网络。在本文中,我们研究了机架级计算系统的光学互连,并提出了一种新的通信流和控制方案,以便有效地协调分布式资源。特别是,我们首先提出了一种前向传播策略,使路径预留过程与分布式任务连接设置相似。其次,我们开发了一种先发制人的链反馈(PCF)方案以优化多源路径预留。 PCF方案在Multicell预留窗口的帮助下先先卸下网络资源,并通过反馈机制快速发布资源。该解决方案增加了网络资源利用率和任务协调效率,同时最小化路径预留架空。与基线Infiniband网络结构和握手方案相比,PCF可以在均匀和热点流量模式下提高网络吞吐量。现实的基准结果表明,PCF方案平均降低了比Infiniband和256节点机架系统的握手方案的52%和60%的能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号