首页> 外文学位 >Energy-efficient electrical and silicon-photonic networks in manycore systems.
【24h】

Energy-efficient electrical and silicon-photonic networks in manycore systems.

机译:许多核心系统中的节能电气和硅光子网络。

获取原文
获取原文并翻译 | 示例

摘要

During the past decade, the very large scale integration (VLSI) community has migrated towards incorporating multiple cores on a single chip to sustain the historic performance improvement in computing systems. As the core count continuously increases, the performance of network-on-chip (NoC), which is responsible for the communication between cores, caches and memory controllers, is increasingly becoming critical for sustaining the performance improvement. In this dissertation, we propose several methods to improve the energy efficiency of both electrical and silicon-photonic NoCs. Firstly, for electrical NoC, we propose a flow control technique, Express Virtual Channel with Taps (EVC-T), to transmit both broadcast and data packets efficiently in a mesh network. A low-latency notification tree network is included to maintain the order of broadcast packets. The EVC-T technique improves the NoC latency by 24% and the system energy efficiency in terms of energy-delay product (EDP) by 13%. In the near future, the silicon-photonic links are projected to replace the electrical links for global on-chip communication due to their lower data-dependent power and higher bandwidth density, but the high laser power can more than offset these advantages. Therefore, we propose a silicon-photonic multi-bus NoC architecture and a methodology that can reduce the laser power by 49% on average through bandwidth reconfiguration at runtime based on the variations in bandwidth requirements of applications. We also propose a technique to reduce the laser power by dynamically activating/deactivating the L2 cache banks and switching ON/OFF the corresponding silicon-photonic links in a crossbar NoC. This cache-reconfiguration based technique can save laser power by 23.8% and improves system EDP by 5.52% on average. In addition, we propose a methodology for placing and sharing on-chip laser sources by jointly considering the bandwidth requirements, thermal constraints and physical layout constraints. Our proposed methodology for placing and sharing of on-chip laser sources reduces laser power. In addition to reducing the laser power to improve the energy efficiency of silicon-photonic NoCs, we propose to leverage the large bandwidth provided by silicon-photonic NoC to share computing resources. The global sharing of floating-point units can save system area by 13.75% and system power by 10%.
机译:在过去的十年中,超大规模集成(VLSI)社区已朝着在单个芯片上集成多个内核的方向发展,以维持计算系统的历史性性能改进。随着内核数量的不断增加,负责内核,缓存和内存控制器之间通信的片上网络(NoC)的性能对于维持性能的提高变得越来越关键。在本文中,我们提出了几种提高电学和硅光子NoC能量效率的方法。首先,对于电气NoC,我们提出了一种流量控制技术,即带有分接头的Express虚拟通道(EVC-T),以在网状网络中有效地传输广播和数据包。包括低延迟通知树网络以维护广播数据包的顺序。 EVC-T技术将NoC延迟提高了24%,将系统能源效率(以能量延迟乘积(EDP)计)提高了13%。在不久的将来,由于其较低的数据相关功率和较高的带宽密度,预计硅光子链路将取代用于全局片上通信的电链路,但是高激光功率可以抵消这些优势。因此,我们提出了一种硅光子多总线NoC架构和一种方法,该方法可以根据应用程序带宽要求的变化,通过在运行时进行带宽重新配置,平均将激光功率降低49%。我们还提出了一种通过动态激活/停用L2高速缓存存储区并在纵横制NoC中打开/关闭相应的硅光子链路来降低激光功率的技术。这种基于缓存重新配置的技术平均可节省23.8%的激光功率,平均可提高5.52%的系统EDP。此外,我们结合带宽要求,热约束和物理布局约束,提出了一种放置和共享片上激光源的方法。我们提出的用于放置和共享片上激光源的方法会降低激光功率。除了降低激光功率以提高硅光子NoC的能效外,我们还建议利用硅光子NoC提供的大带宽来共享计算资源。浮点单元的全球共享可以节省系统面积13.75%,节省系统功率10%。

著录项

  • 作者

    Chen, Chao.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号