首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >HEIF: Highly Efficient Stochastic Computing-Based Inference Framework for Deep Neural Networks
【24h】

HEIF: Highly Efficient Stochastic Computing-Based Inference Framework for Deep Neural Networks

机译:HEIF:用于深度神经网络的高效基于随机计算的推理框架

获取原文
获取原文并翻译 | 示例

摘要

Deep convolutional neural networks (DCNNs) are one of the most promising deep learning techniques and have been recognized as the dominant approach for almost all recognition and detection tasks. The computation of DCNNs is memory intensive due to large feature maps and neuron connections, and the performance highly depends on the capability of hardware resources. With the recent trend of wearable devices and Internet of Things, it becomes desirable to integrate the DCNNs onto embedded and portable devices that require low power and energy consumptions and small hardware footprints. Recently stochastic computing (SC)-DCNN demonstrated that SC as a low-cost substitute to binary-based computing radically simplifies the hardware implementation of arithmetic units and has the potential to satisfy the stringent power requirements in embedded devices. In SC, many arithmetic operations that are resource-consuming in binary designs can be implemented with very simple hardware logic, alleviating the extensive computational complexity. It offers a colossal design space for integration and optimization due to its reduced area and soft error resiliency. In this paper, we present HEIF, a highly efficient SC-based inference framework of the large-scale DCNNs, with broad applications including (but not limited to) LeNet-5 and AlexNet, that achieves high energy efficiency and low area/ hardware cost. Compared to SC-DCNN, HEIF features: 1) the first (to the best of our knowledge) SC-based rectified linear unit activation function to catch up with the recent advances in software models and mitigate degradation in application-level accuracy; 2) the redesigned approximate parallel counter and optimized stochastic multiplication using transmission gates and inverse mirror adders; and 3) the new optimization of weight storage using clustering. Most importantly, to achieve maximum energy efficiency while maintaining acceptable accuracy, HEIF considers holistic optimizations on cascade connection of function blocks in DCNN, pipelining technique, and bit-stream length reduction. Experimental results show that in large-scale applications HEIF outperforms previous SC-DCNN by the throughput of 4.1x, by area efficiency of up to 6.5x, and achieves up to 5.6x energy improvement.
机译:深度卷积神经网络(DCNN)是最有前途的深度学习技术之一,并且已被公认为几乎所有识别和检测任务的主要方法。由于较大的特征图和神经元连接,DCNN的计算会占用大量内存,而性能很大程度上取决于硬件资源的能力。随着可穿戴设备和物联网的最新趋势,人们希望将DCNN集成到要求低功耗和能耗以及较小硬件占用空间的嵌入式和便携式设备上。最近的随机计算(SC)-DCNN证明,SC作为基于二进制的计算的低成本替代品,从根本上简化了算术单元的硬件实现,并有潜力满足嵌入式设备中严格的功率要求。在SC中,可以使用非常简单的硬件逻辑来实现二进制设计中许多资源消耗的算术运算,从而减轻了广泛的计算复杂性。由于其面积减小和软错误恢复能力,它为集成和优化提供了巨大的设计空间。在本文中,我们介绍了HEIF,这是大型DCNN的基于SC的高效推理框架,具有广泛的应用,包括(但不限于)LeNet-5和AlexNet,可实现高能效和低面积/硬件成本。与SC-DCNN相比,HEIF具有以下特点:1)第一个(据我们所知)基于SC的整流线性单元激活功能,以赶上软件模型的最新发展并减轻应用程序级精度的下降; 2)使用传输门和反镜加法器重新设计的近似并行计数器和优化的随机乘法;和3)使用聚类的权重存储的新优化。最重要的是,为了在保持可接受的精度的同时实现最大的能源效率,HEIF考虑了对DCNN中功能块的级联连接,流水线技术和位流长度减少的整体优化。实验结果表明,在大规模应用中,HEIF的吞吐量提高了4.1倍,面积效率高达6.5倍,性能优于以前的SC-DCNN,并实现了5.6倍的能源改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号